
Operating Systems
and

Using Linux

Curtosey of John Y. Park

1 2

Operating Systems and Using
Linux

Topics

� What is an Operating System?
� Linux Overview
� Frequently Used Linux Commands

3

What is an Operating System?

� A computer program that:
� Controls how the CPU, memory and I/O devices

work together to execute programs
� Performs many operations, such as:

� Allows you to communicate with the computer (tell it
what to do)

� Controls access (login) to the computer
� Keeps track of all processes currently running

� Often referred to as simply OS

What is an Operating System?

� Provides a uniform interface for users and
programs to access changing, evolving
hardware (H/W)

� Very different H/W platforms can support a
common OS (partially custom-written, of
course) (standard “PC”, Sony PSP can both
run Linux)

� One H/W platform can support multiple OSs
� E.g.: Latest Macs can run MacOS or Windows

4

5

How Do I Communicate With
the Computer Using the OS?

� You communicate using the particular OS’s
user interface.
� Graphical User Interface (GUI) – Windows,

Linux
� Command-driven interface - DOS, UNIX,

Linux

� We will be using the Linux operating system,
which is very similar to UNIX. Notice that it is
listed as both GUI and Command-driven.

6

GUI vs. Command-driven

� We will be using both the GUI version of
Linux and the Command-driven Interface.

� When you connect to GL through TeraTerm,
you are using only the Command-driven
Interface.

� When you reboot the computer into Linux,
you will use both the GUI and the Command-
driven Interface.

7

Example of Command-driven

Screenshot of connection to linux3.gl.umbc.edu
8

Example of GUI

Screenshot of Fedora 7

9

Another Example of GUI

Screenshot of Red Hat Enterprise Linux (RHEL) 5 10

Why a GUI?

� GUIs are sometimes better, because:
� Give a good sense of “where I am”
� Succinct visual summary of small sets
� Easier to find “forgotten” target, then act on it
� Simple to execute default behavior

� Otherwise, often resort to complex “environments”

Why a Command Line?

� Command lines are sometimes better,
because:
� Easier to operate on large sets
� Convenient if you remember filenames

(and you should)
� Can act on multiple objects in disparate locations
� Easier if no simple default behavior

11 12

How Do I Communicate With the
Computer Using the OS? (con’t)

� When you log in to the Linux system here, a user prompt will be
displayed:

where # is the number of the Linux server to which you
have connected. You may use any of the Linux servers:
linux1, linux2 or linux3.

� The number in the brackets will change as you work. It is the
“number” of the command that you are about to type.

� If this prompt is not on the screen at any time, you are not
communicating with the OS.

linux#[1]% _

13

Linux Overview

� Files and Filenames
� Directories and Subdirectories
� Frequently Used Commands

14

Files

� A file is a sequence of bytes.
� It can be created by

� a text editor (XEmacs or Notepad)
� a computer program (such as a C program)

� It may contain a program, data, a document,
or other information .

� Files that contain other files are called
directories (sometimes called folders).

15

Linux Filenames

� Restrictions
� Typically do not have spaces or other reserved characters
� Have a maximum length (typically 255 characters but who

wants to type that much!)
� Are case sensitive

� For this class, you should stick with filenames that
contain only letters (uppercase or lowercase),
numbers, and the underscore (_) or hypen (-). No
spaces!

� Some examples: firefox.exe, things2do.txt,
dinner_menu.pdf

16

Directories

� Directories contain files or other directories
called subdirectories. They may also be
empty.

� Directories are organized in a hierarchical
fashion.

� They help us to keep our files organized.

17

Example Directory Tree

/afs/umbc.edu/users/j/d/jdoe28/home/

Mail/ recipes/ courses/

pies/ cookies/ CMSC104/

apple.txt peach.txt choc_chip.txt

18

Subdirectories

� Are used for organizing your files
� For example,

� make a subdirectory for CMSC104
� make subdirectories for each project

CMSC104/

hw1/ hw3/ ... proj4/

19

More Directories

� Your home directory is where you are located when
you log in
(e.g., /afs/umbc.edu/users/j/d/jdoe28/home/).

� The current directory is where you are located at any
time while you are using the system.

� The / (pronounced “slash”) is the root directory in Linux.
� Files within the same directory must be given unique

names.
� Paths allow us to give the same name to different files

located in different directories.
� Each running program has a current directory and all

filenames are implicitly assumed to start with the name
of that directory unless they begin with a slash.

20

Moving in the Directory Tree

� . (dot) is the current directory.
� . . (dot-dot) is the parent directory.
� Use the Linux command cd to change directories.
� Use dot-dot to move up the tree.

� cd ..

� Use the directory name to move down.
� cd recipes

� Use the complete directory name (path name) to move
anywhere.
� cd /afs/umbc.edu/users/j/d/jdoe28/home/recipes/

21

Absolute Path

� The absolute path is a path that contains the
root directory and all other subdirectories you
need to access the file

� It points to the same location in the directory
tree regardless of the current working
directory

� An example of an absolute path

/afs/umbc.edu/users/j/d/jdoe28/home/recipes/

Starts with
/

22

Relative Path

� The relative path is a partial path to a file in
relation to the current working directory

� If inside of the home directory in the previous
directory example, a relative path would be

recipes/cookies/

Does not
start with /

23

Wildcard Characters

� You will find wildcard characters useful when
manipulating files (e.g., listing or moving them).

� The wildcard characters are * and ?
� ? is used to represent any single character.

� For example, ls hw?.txt would match the files hw1.txt
and hw2.txt but not hw123.txt

� * is used to represent 0 or more characters.
� For example, ls hw*.txt would match the files hw1.txt

and hw2.txt, as well as hw.txt, hw123.txt and
hw_assignment.txt

24

What is a “Shell”?

� The “most important program in the OS” ☺
� Your primary means of controlling the OS
� On Linux, just another program!

� Can use other shells: sh, csh, bash, tcsh

� Can be programmed to do complex tasks
� Every command (almost) is just running

another program
� Main differences are in syntax, ease of use

Common Commands

� Directory operations:
� pwd, cd, mkdir, rmdir

� File manipulation:
� ls, rm, cp, mv, cat

� File examination
� cat, more, less, head, tail, file

� File editing
� ed, emacs, sed

� Misc (pine, find, etc.)
25 26

I/O Redirection

� All programs read from standard input
“channel”, write to standard output “channel”
� Called “file descriptors”

� Shell can manipulate these file descriptors
before executing command (i.e., program)

� Devices and files treated similarly
� “<“: redirect input
� “>”: redirect output

27

I/O Redirection

� Examples:
� % ls > my-files.txt
� % wc < my-files.txt

28

Pipes

� Communications channel between two programs
� Can think of as a temporary file that first program writes to,

second program then reads from

� Syntax:
% program1 | program2

� Example:
% ls | wc

will give you the number of files you have

29

Command Line Editing

� Allows command to be edited before being
executed

� Uses subset of emacs commands:
� Ctl-B, Ctl-F, Ctl-A, Ctl-E, <Backspace>, Ctl-D

� Allows previous commands to be recalled,
then optionally edited

� Very convenient for:
� Typos
� Repetitive commands

