
12/10/2012

1

Globals, Statics, and

Pointers

CMSC 104, Fall 2012

John Y. Park

Globals, Statics, and Pointers

 Different kinds of variable scopes

 What global variables are

 What the static declaration does

 Pointers!

 Strings

Scope of a Variable

 A variable is simply a location in memory

 What matters is:

 What type you interpret the contents as (integer?

floating point? address?)

 Who is using it?

 Who will (re)use that location in the future?

12/10/2012

2

 In most programming languages, we only

access memory locations by names (the

variable identifier)

 In C, we also usually refer to memory

locations by name

 When the the C compiler (e.g., gcc) compiles

our program, it converts our C statements

into machine instructions, and turns our

variable references into addresses of specific

memory locations

 BUT: we previously learned—

 our variables are local to a function (can only be

accessed from inside the function)—is it possible

to access that memory from other code, other

functions?

 we can have multiple instances of a function

executing “at the same time”—how do they

share—actually, not have to share!—the same

memory location?

Local Variables

 Local variables are implemented in a special

way:

 Computers have custom support for accessing a

clustered group of variables: relative addressing

 You just need to know that there is a simple way

for each instance of a function (different functions,

or even same function) to place its local variables

in a fresh, unused area of memory.

 Actually, you also need to know that when a

function returns, the local memory is recycled

12/10/2012

3

 Are there any other kinds of variables?

 It would be useful to have variables that:

 can be referenced by name from any function

 exist independent of any function’s execution

 We could use such variables to:

 share information between functions

 Not just between functions calling other functions

 store things away from a function that will still be

there when the function is called again

Global Variables

 A global variable is a variable that is defined

outside any function

 It is allocated (a memory space is reserved

for it) by the C compiler in a public area of

memory.

 This space is not ever reclaimed for use for

some other function or purpose

What Will This Output?
#include <stdio.h>

int Global_var;

int main() {

 int local_var = 10;

 /* Notice: I can reference global vars here */

 Global_var = 42;

 func_x();

 printf(“local=%d, global=%d\n”, local_var, Global_var);

}

void func_x(void) {

 int local_var;

 local_var = 1;

 Global_var = 47

}

12/10/2012

4

Benefits of Global Variables

 You can use global variables to hold values

that you want to keep around for the entire

duration of your program

 Global variables are also used to provide a

place to store values used by a large number

of functions

 Also can store things that are used by

functions that are only connected through

many layers of other intermediary functions

Downside of Global Variables

 They hide connections between functions

 Difficult to find out how/when variable

changed, or who (what function) modified it

 In general, using global variables is

considered bad design

 There are a few situations where it is very

useful, though

 Like break and continue: try not to use in

general, and definitely don’t use in intro CS

Static Variables

(Often referred to as simply “statics”)

 Two types: global statics and local statics

 Global static variables behave just like

regular global variables:

 A single copy, which exists through the entire

duration of your program’s execution

 However, it has limited scope: it can only be

accessed by name from within the functions

in a single file

12/10/2012

5

Compiling in Pieces

This needs further explanation:

 Your program can be written in several

pieces (files)

 Each piece can be compiled separately, but

then does not produce a complete working

program by itself

 When all the pieces are compiled, they can

be linked into a single executable [file]

Local Static Variables

 Similar to global statics variables:

 A single copy of the variable, which exists through

the entire duration of your program’s execution

 This implies it continues to exist after a function

returns

 Unlike local vars, if a function calls recurses (i.e.,

calls itself) it does not get a new copy of local

statics—those are shared across instances of a

function

 Scope is even more limited: to just inside the

function it is declared in

Pointers

 We previously discussed getting a reference

to (i.e., the address of) a variable, by using

the ‘&’ operator:

 int i;

 /* pass the address of i to scanf(), so that scanf can

 * copy the number read in into that variable

 */

 scanf(“%d”, &i);

12/10/2012

6

Pointers

 Can we do the opposite: ask C to use an

integer as an address, and get the thing at

that address?

 Unfortunately, no such thing as THING_AT(),

so how do we get that to work?

 int i, my_var;

 /* Get the address of my_var */

 i = &my_var;

 /* Now, we want to change what is at that address: *?

 THING_AT(i) = 47;

Pointers

 There are times when we want to pass

something to a function and have that

function change it in-place

 we can currently do that with arrays—why not

simpler things, like ints?

 We’ve already seen a good example: scanf()

 Would scanf() be possible to write any other way?

 Not really… Or at least not as flexibly

Pointers

 We already know first part: getting the

address of a variable with the ‘&’

 The reverse operation is actually just as

simple: use an ‘*’

 int i, my_var;

 /* Get the address of our var into another var */

 i = &my_var;

 /* And now, change what is at that original var */

 /* by using its address */

 *i = 47;

12/10/2012

7

Pointers

 Actually, no reason that wouldn’t work, but C

feels nervous about what you are doing:

 An int is not exactly the same thing as an address

 When you put something into *I, how does it know

if any conversion is necessary? For example, if

you assigned a float into an int, or vice versa, C

would do proper conversion. It wouldn’t know how

here.

Pointers

 So, we need to give C a little more info:

 /* First, we need to tell C exactly what ‘i‘ is: */

 /* a POINTER to an int */

 int *i, my_var;

 i = &my_var;

 /* This works: */

 *i = 47;

 /* And so will this! It will convert the float 2.9

 * to the int 2 before putting it into my_var */

 *i = 2.9;

Unary vs. Binary ‘*’

 But isn’t ‘*’ already used as the multiplication

operator?

 We can use it for a different purpose here

because we want to use it as a unary

operator

 takes one operand, not two like multiplication

12/10/2012

8

Unary vs. Binary ‘*’

 So if we see:

x = 2 * y

We know it’s a binary operator, because

interpreting it as a unary would make the

sentence syntactically incorrect

 Similarly, the following only has legal

interpretation:

x = 2 + * y

We can reinforce this in the reader’s mind with

better spacing:

x = 2 + *y

Final Thoughts

 That’s really all there is to it!

 Recap:

 We can get the address of any variable just by

prepending an ‘&’ before the reference

 This can be a simple variable (“&I”), or an element in

an array (“&my_array[9]”, or even “&num[i + 2]”)

 We can then use that address by prepending a ‘*’

in front of the value

 This can be the value in a pointer variable (“i = #

i = 47”), or an expression (“(i + 6)” or even “*&num”)

 Best to keep it simple, though…

