
12/10/2012

1

Globals, Statics, and

Pointers

CMSC 104, Fall 2012

John Y. Park

Globals, Statics, and Pointers

 Different kinds of variable scopes

 What global variables are

 What the static declaration does

 Pointers!

 Strings

Scope of a Variable

 A variable is simply a location in memory

 What matters is:

 What type you interpret the contents as (integer?

floating point? address?)

 Who is using it?

 Who will (re)use that location in the future?

12/10/2012

2

 In most programming languages, we only

access memory locations by names (the

variable identifier)

 In C, we also usually refer to memory

locations by name

 When the the C compiler (e.g., gcc) compiles

our program, it converts our C statements

into machine instructions, and turns our

variable references into addresses of specific

memory locations

 BUT: we previously learned—

 our variables are local to a function (can only be

accessed from inside the function)—is it possible

to access that memory from other code, other

functions?

 we can have multiple instances of a function

executing “at the same time”—how do they

share—actually, not have to share!—the same

memory location?

Local Variables

 Local variables are implemented in a special

way:

 Computers have custom support for accessing a

clustered group of variables: relative addressing

 You just need to know that there is a simple way

for each instance of a function (different functions,

or even same function) to place its local variables

in a fresh, unused area of memory.

 Actually, you also need to know that when a

function returns, the local memory is recycled

12/10/2012

3

 Are there any other kinds of variables?

 It would be useful to have variables that:

 can be referenced by name from any function

 exist independent of any function’s execution

 We could use such variables to:

 share information between functions

 Not just between functions calling other functions

 store things away from a function that will still be

there when the function is called again

Global Variables

 A global variable is a variable that is defined

outside any function

 It is allocated (a memory space is reserved

for it) by the C compiler in a public area of

memory.

 This space is not ever reclaimed for use for

some other function or purpose

What Will This Output?
#include <stdio.h>

int Global_var;

int main() {

 int local_var = 10;

 /* Notice: I can reference global vars here */

 Global_var = 42;

 func_x();

 printf(“local=%d, global=%d\n”, local_var, Global_var);

}

void func_x(void) {

 int local_var;

 local_var = 1;

 Global_var = 47

}

12/10/2012

4

Benefits of Global Variables

 You can use global variables to hold values

that you want to keep around for the entire

duration of your program

 Global variables are also used to provide a

place to store values used by a large number

of functions

 Also can store things that are used by

functions that are only connected through

many layers of other intermediary functions

Downside of Global Variables

 They hide connections between functions

 Difficult to find out how/when variable

changed, or who (what function) modified it

 In general, using global variables is

considered bad design

 There are a few situations where it is very

useful, though

 Like break and continue: try not to use in

general, and definitely don’t use in intro CS

Static Variables

(Often referred to as simply “statics”)

 Two types: global statics and local statics

 Global static variables behave just like

regular global variables:

 A single copy, which exists through the entire

duration of your program’s execution

 However, it has limited scope: it can only be

accessed by name from within the functions

in a single file

12/10/2012

5

Compiling in Pieces

This needs further explanation:

 Your program can be written in several

pieces (files)

 Each piece can be compiled separately, but

then does not produce a complete working

program by itself

 When all the pieces are compiled, they can

be linked into a single executable [file]

Local Static Variables

 Similar to global statics variables:

 A single copy of the variable, which exists through

the entire duration of your program’s execution

 This implies it continues to exist after a function

returns

 Unlike local vars, if a function calls recurses (i.e.,

calls itself) it does not get a new copy of local

statics—those are shared across instances of a

function

 Scope is even more limited: to just inside the

function it is declared in

Pointers

 We previously discussed getting a reference

to (i.e., the address of) a variable, by using

the ‘&’ operator:

 int i;

 /* pass the address of i to scanf(), so that scanf can

 * copy the number read in into that variable

 */

 scanf(“%d”, &i);

12/10/2012

6

Pointers

 Can we do the opposite: ask C to use an

integer as an address, and get the thing at

that address?

 Unfortunately, no such thing as THING_AT(),

so how do we get that to work?

 int i, my_var;

 /* Get the address of my_var */

 i = &my_var;

 /* Now, we want to change what is at that address: *?

 THING_AT(i) = 47;

Pointers

 There are times when we want to pass

something to a function and have that

function change it in-place

 we can currently do that with arrays—why not

simpler things, like ints?

 We’ve already seen a good example: scanf()

 Would scanf() be possible to write any other way?

 Not really… Or at least not as flexibly

Pointers

 We already know first part: getting the

address of a variable with the ‘&’

 The reverse operation is actually just as

simple: use an ‘*’

 int i, my_var;

 /* Get the address of our var into another var */

 i = &my_var;

 /* And now, change what is at that original var */

 /* by using its address */

 *i = 47;

12/10/2012

7

Pointers

 Actually, no reason that wouldn’t work, but C

feels nervous about what you are doing:

 An int is not exactly the same thing as an address

 When you put something into *I, how does it know

if any conversion is necessary? For example, if

you assigned a float into an int, or vice versa, C

would do proper conversion. It wouldn’t know how

here.

Pointers

 So, we need to give C a little more info:

 /* First, we need to tell C exactly what ‘i‘ is: */

 /* a POINTER to an int */

 int *i, my_var;

 i = &my_var;

 /* This works: */

 *i = 47;

 /* And so will this! It will convert the float 2.9

 * to the int 2 before putting it into my_var */

 *i = 2.9;

Unary vs. Binary ‘*’

 But isn’t ‘*’ already used as the multiplication

operator?

 We can use it for a different purpose here

because we want to use it as a unary

operator

 takes one operand, not two like multiplication

12/10/2012

8

Unary vs. Binary ‘*’

 So if we see:

x = 2 * y

We know it’s a binary operator, because

interpreting it as a unary would make the

sentence syntactically incorrect

 Similarly, the following only has legal

interpretation:

x = 2 + * y

We can reinforce this in the reader’s mind with

better spacing:

x = 2 + *y

Final Thoughts

 That’s really all there is to it!

 Recap:

 We can get the address of any variable just by

prepending an ‘&’ before the reference

 This can be a simple variable (“&I”), or an element in

an array (“&my_array[9]”, or even “&num[i + 2]”)

 We can then use that address by prepending a ‘*’

in front of the value

 This can be the value in a pointer variable (“i = #

i = 47”), or an expression (“(i + 6)” or even “*&num”)

 Best to keep it simple, though…

