
Searching

and Sorting

CMSC 104, Fall 2012

John Y. Park

1

Searching and Sorting

Topics

 Algorithms and Reusability

 Algorithmic Classes: Example 1--Search

 Algorithmic Classes: Example 2--Sorting

Reading

 Sections 6.6 - 6.8

Searching and Sorting

Topics

 Algorithms and Reusability

 Algorithmic Classes: Example 1--Search

 Algorithmic Classes: Example 2--Sorting

Reading

 Sections 6.6 - 6.8

Common Problems/

Common Solutions

 When writing most interesting programs, there is often a

core algorithmic challenge

 Many different problem domains actually have similar

underlying solutions

 Abstraction is the key to reuse

 E.g.: textual search identifying genetic patterns

 Reuse has important benefits

 Saves work

 Increases reliability

 Donald Knuth’s The Art of Computer Programming

 The “bible” of programming

Common Problems/

Common Solutions (cont.)

 There are some very common problems that we

use computers to solve:

 Searching through a lot of records for a specific

record or set of records

 Placing records in order, which we call sorting

 There are numerous algorithms to perform

searches and sorts.

 Knuth dedicates 800(!) pages to the subject:

Vol. 3: Sorting and Searching

 We will briefly explore a few common ones.

Searching and Sorting

Topics

 Algorithms and Reusability

 Algorithmic Classes: Example 1--Search

 Sequential Search on an Unordered File

 Sequential Search on an Ordered File

 Binary Search

 Algorithmic Classes: Example 2--Sorting

Searching

 A question you should always ask when selecting

a search algorithm:

 “How fast does the search have to be?”

 In general, the faster the algorithm is, the more complex

it is.

 Bottom line: you don’t always need to use, nor

should you use, the “fastest” algorithm.

 Let’s explore two sample search algorithms,

keeping speed in mind.

 Sequential (linear) search

 Binary search

Sequential Search on an

Unordered File

 Basic algorithm:

Get the search criterion (the key)

Get the first record from the file

While ((record != key) and (still more records))

 Get the next record

End_while

 When do we know that there wasn’t a record in the file that

matched the key?

Sequential Search on an

Ordered File

 Basic algorithm:

Get the search criterion (the key)

Get the first record from the file

While ((record < key) and (still more records))

 Get the next record

End_while

If (record = key)

 Then success

 Else there is no match in the file

End_else

 When do we know that there wasn’t a record in the file that

matched the key?

Sequential Search of

Unordered vs. Ordered List

 Let’s do a comparison.

 If the order was ascending alphabetical on

customer’s last names, how would the search for

John Adams on the unordered list compare with

the search on the ordered list?

 Unordered list

 if John Adams was in the list?

 if John Adams was not in the list?

 Ordered list

 if John Adams was in the list?

 if John Adams was not in the list?

Unordered vs Ordered (con’t)

 How about George Washington?

 Unordered

 if George Washington was in the list?

 If George Washington was not in the list?

 Ordered

 if George Washington was in the list?

 If George Washington was not in the list?

 How about James Madison?

Unordered vs. Ordered (con’t)

 Observation: the search is faster on an ordered list only

when the item being searched for is not in the list.

 (But didn’t we find “Adams” more quickly in ordered?...)

 Also, keep in mind that the list has to first be placed in order

for the ordered search.

 Conclusion: the efficiency of these algorithms is roughly

the same.

 So, if we need a faster search, we need a completely

different algorithm.

 How else could we search an ordered file?

Binary Search

 If we have an ordered list and we know how

many things are in the list (i.e., number of

records in a file), we can use a different

strategy.

 The binary search gets its name because the

algorithm continually divides the list into two

parts.

How a Binary Search Works

 Always look at the center

value. Each time you get

to discard half of the

remaining list.

 Is this fast ?

How Fast is a Binary Search?

 Worst case: 11 items in the list took 4 tries

 How about the worst case for a list with 32

items ?

 1st try - list has 16 items

 2nd try - list has 8 items

 3rd try - list has 4 items

 4th try - list has 2 items

 5th try - list has 1 item

How Fast is a Binary Search?

(con’t)

 List has 250 items

 1st try - 125 items

 2nd try - 63 items

 3rd try - 32 items

 4th try - 16 items

 5th try - 8 items

 6th try - 4 items

 7th try - 2 items

 8th try - 1 item

 List has 512 items

 1st try - 256 items

 2nd try - 128 items

 3rd try - 64 items

 4th try - 32 items

 5th try - 16 items

 6th try - 8 items

 7th try - 4 items

 8th try - 2 items

 9th try - 1 item

What’s the Pattern?

 List of 11 took 4 tries

 List of 32 took 5 tries

 List of 250 took 8 tries

 List of 512 took 9 tries

 32 = 25 and 512 = 29

 8 < 11 < 16 23 < 11 < 24

 128 < 250 < 256 27 < 250 < 28

A Very Fast Algorithm!

 How long (worst case) will it take to find an

item in a list 30,000 items long?

 210 = 1024 213 = 8192

 211 = 2048 214 = 16384

 212 = 4096 215 = 32768

 So, it will take only 15 tries!

Lg n Efficiency

 We say that the binary search algorithm runs

in log2 n time. (Also written as lg n)

 Lg n means the log to the base 2 of some

value of n.

 8 = 23 lg 8 = 3 16 = 24 lg 16 = 4

 There are no algorithms that run faster than lg

n time.

Sorting--Motivation

 So, the binary search is a very fast search

algorithm.

 But, the list has to be sorted before we can

search it with binary search.

 To be really efficient, we also need a fast sort

algorithm.

Searching and Sorting

Topics

 Algorithms and Reusability

 Algorithmic Classes: Example 1--Search

 Algorithmic Classes: Example 2--Sorting

 Bubble Sort

 Insertion Sort

Common Sort Algorithms

 Bubble Sort Heap Sort

 Selection Sort Merge Sort

 Insertion Sort Quick Sort

 There are many known sorting algorithms. Bubble sort is

the slowest, running in n2 time. Quick sort is the fastest,

running in n·lg n time.

 As with searching, the faster the sorting algorithm, the more

complex it tends to be.

 We will examine two sorting algorithms:

 Bubble sort

 Insertion sort

Bubble Sort - Let’s Do One!

 Sorting Demos

C

P

G

A

T

O

B

Bubble Sort Code

void bubbleSort (int a[] , int size)

{

 int i, j, temp;

 for (i = 0; i < size; i++) /* controls passes through the list */

 {

 for (j = 0; j < size - 1; j++) /* performs adjacent comparisons */

 {

 if (a[j] > a[j+1]) /* determines if a swap should occur */

 {

 temp = a[j]; /* swap is performed */

 a[j] = a[j + 1];

 a[j+1] = temp;

 }

 }

 }

}

http://www.cs.oswego.edu/~mohammad/classes/csc241/samples/sort/Sort2-E.html

Bubble Sort--Optimizations

 Can you think of quick-and-dirty tweaks to the

code to:

 Trim the inner loop to fewer turns?

 Stop the outer loop early in opportune cases?

25

Insertion Sort

 Insertion sort is slower than quicksort, but not

as slow as bubble sort, and it is easy to

understand.

 Insertion sort works the same way as

arranging your hand when playing cards.

 Out of the pile of unsorted cards that were dealt to

you, you pick up a card and place it in your hand in

the correct position relative to the cards you’re

already holding.

Arranging Your Hand

7

5 7

Arranging Your Hand

5 6

 7 5

7

5 6 7

K

5 6 7 8 K

Insertion Sort

 Unsorted - shaded

 Look at 2nd item - 5.

 Compare 5 to 7.

 5 is smaller, so move 5

 to temp, leaving

 an empty slot in

 position 2.

 Move 7 into the empty

 slot, leaving position 1

 open.

 Move 5 into the open

 position.

7

 7

5 7

5

7

K

5

 7

v

>

<

1

2

3

Insertion Sort (con’t)

 Look at next item - 6.

 Compare to 1st - 5.

 6 is larger, so leave 5.

 Compare to next - 7.

 6 is smaller, so move

 6 to temp, leaving an

 empty slot.

 Move 7 into the empty

 slot, leaving position 2

 open.

 Move 6 to the open

 2nd position.

7

 7

5

7

5

K 5

 7

v

>

<

1

2

3

 6

 7

 6 5

 6

5

Insertion Sort (con’t)

 Look at next item - King.

 Compare to 1st - 5.

 King is larger, so

 leave 5 where it is.

 Compare to next - 6.

 King is larger, so

 leave 6 where it is.

 Compare to next - 7.

 King is larger, so

 leave 7 where it is.

 7 K 5 6

Insertion Sort (con’t)

7

 7

5

7

5 K

5

 7

v

>

<

1

2

3

 6 7

 8

5

 6

5

 6

 6

 6

8

K 8

K

K 8

K

Merge Sort

 Concept is “divide and conquer”

 We first merge and order adjacent pairs of

entries

 We then merge and order our ordered-pairs

of doubles

 We then merge and order our ordered-quads

 Continue until we have only one pile

 How I sort exams by alphabetical order

33

Quicksort

 Fastest general sort known (so far)

 Basic premise:

 Pick random item (usually middle slot)

 Rearrange list to move lower items to top, higher

items to bottom

 Recurse (fancy CS term) on the upper and lower

subsets

34

How to Pick an Algorithm?

 Order of complexity is an important

consideration

 Average-case and “worst-case performance

 There is rarely a “best” algorithm – just often

“better ones”

 Will frequently start from some standard

algorithm and (hopefully) improve

 Understanding the details of an algorithm’s

behavior is critical to success
35

