Searching

and Sorting
000
CMSC 104, Fall 2012 eceo
0000
John Y. Park I
(X J
[J
Searching and Sorting 3

Topics

e Algorithms and Reusability
e Algorithmic Classes: Example 1--Search
e Algorithmic Classes: Example 2--Sorting

Reading
e Sections 6.6 - 6.8

Searching and Sorting

Topics

e Algorithms and Reusability
e Algorithmic Classes: Example 1--Search
e Algorithmic Classes: Example 2--Sorting

Reading
e Sections 6.6 - 6.8

Common Problems/
Common Solutions

e When writing most interesting programs, there is often a
core algorithmic challenge
e Many different problem domains actually have similar
underlying solutions
o Abstraction is the key to reuse
» E.g.:textual search €->identifying genetic patterns
e Reuse has important benefits
o Saves work
o Increases reliability
e Donald Knuth’s The Art of Computer Programming
o The “bible” of programming

Common Problems/
Common Solutions (cont.)

e There are some very common problems that we
use computers to solve:

o Searching through a lot of records for a specific
record or set of records

» Placing records in order, which we call sorting
e There are numerous algorithms to perform
searches and sorts.
e Knuth dedicates 800(!) pages to the subject:
Vol. 3: Sorting and Searching
e We will briefly explore a few common ones.

Searching and Sorting

Topics

e Algorithms and Reusability

e Algorithmic Classes: Example 1--Search
e Sequential Search on an Unordered File
e Sequential Search on an Ordered File
e Binary Search

e Algorithmic Classes: Example 2--Sorting

Searching

e A question you should always ask when selecting
a search algorithm:
o “How fast does the search have to be?”
« In general, the faster the algorithm is, the more complex

itis.

e Bottom line: you don’t always need to use, nor
should you use, the “fastest” algorithm.

e Let’s explore two sample search algorithms,
keeping speed in mind.
o Sequential (linear) search
o Binary search

Sequential Search on an
Unordered File

e Basic algorithm:
Get the search criterion (the key)
Get the first record from the file
While ((record !=key) and (still more records))
Get the next record
End_while

e When do we know that there wasn’t a record in the file that
matched the key?

Sequential Search on an
Ordered File

e Basic algorithm:

Get the search criterion (the key)

Get the first record from the file

While ((record < key) and (still more records))
Get the next record

End_while

If (record = key)
Then success
Else there is no match in the file

End_else

e When do we know that there wasn’t a record in the file that
matched the key?

Sequential Search of
Unordered vs. Ordered List 3

e Let's do a comparison.

e If the order was ascending alphabetical on
customer’s last names, how would the search for
John Adams on the unordered list compare with
the search on the ordered list?

e Unordered list

if John Adams was in the list?

if John Adams was not in the list?
e Ordered list

if John Adams was in the list?

if John Adams was not in the list?

Unordered vs Ordered (con’t) |::

e How about George Washington?
e Unordered
if George Washington was in the list?
If George Washington was not in the list?
e Ordered
if George Washington was in the list?
If George Washington was not in the list?

e How about James Madison?

Unordered vs. Ordered (con’t)

e Observation: the search is faster on an ordered list only
when the item being searched for is not in the list.
o (Butdidn't we find “Adams” more quickly in ordered?...)

e Also, keep in mind that the list has to first be placed in order
for the ordered search.

e Conclusion: the efficiency of these algorithms is roughly
the same.

e So, if we need a faster search, we need a completely
different algorithm.

e How else could we search an ordered file?

Binary Search

o |f we have an ordered list and we know how
many things are in the list (i.e., number of
records in a file), we can use a different
strategy.

e The binary search gets its name because the
algorithm continually divides the list into two
parts.

How a Binary Search Works

ERNNNREREND

ﬁ Always look at the center
Dj value. Each time you get
to discard half of the

remaining list.

%D Is this fast ?

i

How Fast is a Binary Search?

e Worst case: 11 items in the list took 4 tries
e How about the worst case for a list with 32

items ?

o 1sttry - list has 16 items

e 2ndtry - list has 8 items

o 3rd try - list has 4 items

o 4thtry - list has 2 items

o Sthtry - list has 1 item

How Fast is a Binary Search?
(con’t)

List has 250 items List has 512 items
1sttry - 125 items Isttry - 256 items
2nd try - 63 items 2nd try - 128 items
3rd try - 32 items 3rd try - 64 items
4th try - 16 items 4th try - 32 items
5th try - 8 items 5th try - 16 items
6th try - 4 items 6th try - 8 items
7th try - 2 items 7th try - 4 items
8thtry - 1 item 8thtry - 2 items

9th try - 1 item

What'’s the Pattern?

e List of 11 took 4 tries
e List of 32 took 5 tries
e List of 250 took 8 tries
e List of 512 took 9 tries

e 32=25and 512 =2°
e 8<11<16 28<11<2*
e 128 < 250 < 256 27<250< 28

A Very Fast Algorithm!

e How long (worst case) will it take to find an
item in a list 30,000 items long?

210=1024 213=8192
211=2048 214=16384
212 = 4096 215=32768

e So, it will take only 15 tries!

Lg n Efficiency :

e We say that the binary search algorithm runs
in log, n time. (Also written as Ig n)

e Lg n means the log to the base 2 of some
value of n.

e8=2% Ig8=3 16=2% Igl6=4

e There are no algorithms that run faster than Ig
n time.

Sorting--Motivation :

e S0, the binary search is a very fast search
algorithm.

e But, the list has to be sorted before we can
search it with binary search.

e To be really efficient, we also need a fast sort
algorithm.

Searching and Sorting

Topics

e Algorithms and Reusability
e Algorithmic Classes: Example 1--Search
e Algorithmic Classes: Example 2--Sorting
o Bubble Sort
e Insertion Sort

Common Sort Algorithms

Bubble Sort Heap Sort
Selection Sort Merge Sort
Insertion Sort Quick Sort

e There are many known sorting algorithms. Bubble sort is
the slowest, running in n?time. Quick sort is the fastest,
running in n-lg n time.

e As with searching, the faster the sorting algorithm, the more
complex it tends to be.

e We will examine two sorting algorithms:

e Bubble sort
o Insertion sort

Bubble Sort - Let’s Do One!

WOH>»>OTO

Bubble Sort Code

void bubbleSort (int a[] , int size)
{
inti, j, temp;
for (i=0;i<size; i++) /*controls passes through the list */

{

for (j=0;] <size-1;j++) /*performs adjacent comparisons */

{

if (a[j]>a[j+1]) /*determines if a swap should occur */

temp=a[jl; I+ swap is performed */
a[jl=a[j+1];
afj+1]=temp;

http://www.cs.oswego.edu/~mohammad/classes/csc241/samples/sort/Sort2-E.html

Bubble Sort--Optimizations

e Can you think of quick-and-dirty tweaks to the
code to:
e Trim the inner loop to fewer turns?
« Stop the outer loop early in opportune cases?

Insertion Sort

e Insertion sort is slower than quicksort, but not
as slow as bubble sort, and it is easy to
understand.

e Insertion sort works the same way as
arranging your hand when playing cards.

o Out of the pile of unsorted cards that were dealt to
you, you pick up a card and place it in your hand in
the correct position relative to the cards you're
already holding.

Arranging Your Hand

[T
B 4
Ry

5

0
|
¢
5]
¢
|
R

]
KA
6|
¢
|
A

===+ [=~]

Insertion Sort

|

H
H
H

==

H
H
H

H
H
H

H
H
H

N
<o][O _lle~][<~]<~]
v

Unsorted - shaded
Look at 2nd item - 5.
Compare 5to 7.
5 is smaller, so move 5
to temp, leaving
an empty slot in
position 2.
Move 7 into the empty
slot, leaving position 1
open.

Move 5 into the open
position.

Insertion Sort (con’t)

|oo][sa|ea]|ea]e]

)

H
H

H

|

H
H

N
<O _l[e~][e~]<~]
v

Look at next item - 6.
Compare to 1st- 5.

6 is larger, so leave 5.
Compare to next - 7.
6 is smaller, so move
6 to temp, leaving an
empty slot.

Move 7 into the empty
slot, leaving position 2
open.

Move 6 to the open
2nd position.

Insertion Sort (con’t)

5 7 K Look at next item - King.

[[[Compare to 1st- 5.
King is larger, so
leave 5 where it is.

Compare to next - 6.
King is larger, so
leave 6 where it is.

Compare to next - 7.
King is larger, so
leave 7 where it is.

Insertion Sort (con’t)

116117 x5
OO O[O0 ¢]
1|7 [x|[s] ©
OO [0][O]9
Ts e[7 [« 1l |
ERRAIKAIKN I
?TT:fT
L @719
(s 1[6 |[71[8 |[k]| @®
OO L [0 1¢]

Merge Sort

e Concept is “divide and conquer”

e We first merge and order adjacent pairs of
entries

e We then merge and order our ordered-pairs
of doubles

e We then merge and order our ordered-quads
e Continue until we have only one pile
e How | sort exams by alphabetical order

Quicksort

e Fastest general sort known (so far)
e Basic premise:
o Pick random item (usually middle slot)
« Rearrange list to move lower items to top, higher
items to bottom
¢ Recurse (fancy CS term) on the upper and lower
subsets

How to Pick an Algorithm?

e Order of complexity is an important
consideration

e Average-case and “worst-case performance

e There is rarely a “best” algorithm — just often
“better ones”

e Will frequently start from some standard
algorithm and (hopefully) improve

e Understanding the details of an algorithm’s
behavior is critical to success

