
Searching

and Sorting

CMSC 104, Fall 2012

John Y. Park

1

Searching and Sorting

Topics

 Algorithms and Reusability

 Algorithmic Classes: Example 1--Search

 Algorithmic Classes: Example 2--Sorting

Reading

 Sections 6.6 - 6.8

Searching and Sorting

Topics

 Algorithms and Reusability

 Algorithmic Classes: Example 1--Search

 Algorithmic Classes: Example 2--Sorting

Reading

 Sections 6.6 - 6.8

Common Problems/

Common Solutions

 When writing most interesting programs, there is often a

core algorithmic challenge

 Many different problem domains actually have similar

underlying solutions

 Abstraction is the key to reuse

 E.g.: textual search identifying genetic patterns

 Reuse has important benefits

 Saves work

 Increases reliability

 Donald Knuth’s The Art of Computer Programming

 The “bible” of programming

Common Problems/

Common Solutions (cont.)

 There are some very common problems that we

use computers to solve:

 Searching through a lot of records for a specific

record or set of records

 Placing records in order, which we call sorting

 There are numerous algorithms to perform

searches and sorts.

 Knuth dedicates 800(!) pages to the subject:

Vol. 3: Sorting and Searching

 We will briefly explore a few common ones.

Searching and Sorting

Topics

 Algorithms and Reusability

 Algorithmic Classes: Example 1--Search

 Sequential Search on an Unordered File

 Sequential Search on an Ordered File

 Binary Search

 Algorithmic Classes: Example 2--Sorting

Searching

 A question you should always ask when selecting

a search algorithm:

 “How fast does the search have to be?”

 In general, the faster the algorithm is, the more complex

it is.

 Bottom line: you don’t always need to use, nor

should you use, the “fastest” algorithm.

 Let’s explore two sample search algorithms,

keeping speed in mind.

 Sequential (linear) search

 Binary search

Sequential Search on an

Unordered File

 Basic algorithm:

Get the search criterion (the key)

Get the first record from the file

While ((record != key) and (still more records))

 Get the next record

End_while

 When do we know that there wasn’t a record in the file that

matched the key?

Sequential Search on an

Ordered File

 Basic algorithm:

Get the search criterion (the key)

Get the first record from the file

While ((record < key) and (still more records))

 Get the next record

End_while

If (record = key)

 Then success

 Else there is no match in the file

End_else

 When do we know that there wasn’t a record in the file that

matched the key?

Sequential Search of

Unordered vs. Ordered List

 Let’s do a comparison.

 If the order was ascending alphabetical on

customer’s last names, how would the search for

John Adams on the unordered list compare with

the search on the ordered list?

 Unordered list

 if John Adams was in the list?

 if John Adams was not in the list?

 Ordered list

 if John Adams was in the list?

 if John Adams was not in the list?

Unordered vs Ordered (con’t)

 How about George Washington?

 Unordered

 if George Washington was in the list?

 If George Washington was not in the list?

 Ordered

 if George Washington was in the list?

 If George Washington was not in the list?

 How about James Madison?

Unordered vs. Ordered (con’t)

 Observation: the search is faster on an ordered list only

when the item being searched for is not in the list.

 (But didn’t we find “Adams” more quickly in ordered?...)

 Also, keep in mind that the list has to first be placed in order

for the ordered search.

 Conclusion: the efficiency of these algorithms is roughly

the same.

 So, if we need a faster search, we need a completely

different algorithm.

 How else could we search an ordered file?

Binary Search

 If we have an ordered list and we know how

many things are in the list (i.e., number of

records in a file), we can use a different

strategy.

 The binary search gets its name because the

algorithm continually divides the list into two

parts.

How a Binary Search Works

 Always look at the center

value. Each time you get

to discard half of the

remaining list.

 Is this fast ?

How Fast is a Binary Search?

 Worst case: 11 items in the list took 4 tries

 How about the worst case for a list with 32

items ?

 1st try - list has 16 items

 2nd try - list has 8 items

 3rd try - list has 4 items

 4th try - list has 2 items

 5th try - list has 1 item

How Fast is a Binary Search?

(con’t)

 List has 250 items

 1st try - 125 items

 2nd try - 63 items

 3rd try - 32 items

 4th try - 16 items

 5th try - 8 items

 6th try - 4 items

 7th try - 2 items

 8th try - 1 item

 List has 512 items

 1st try - 256 items

 2nd try - 128 items

 3rd try - 64 items

 4th try - 32 items

 5th try - 16 items

 6th try - 8 items

 7th try - 4 items

 8th try - 2 items

 9th try - 1 item

What’s the Pattern?

 List of 11 took 4 tries

 List of 32 took 5 tries

 List of 250 took 8 tries

 List of 512 took 9 tries

 32 = 25 and 512 = 29

 8 < 11 < 16 23 < 11 < 24

 128 < 250 < 256 27 < 250 < 28

A Very Fast Algorithm!

 How long (worst case) will it take to find an

item in a list 30,000 items long?

 210 = 1024 213 = 8192

 211 = 2048 214 = 16384

 212 = 4096 215 = 32768

 So, it will take only 15 tries!

Lg n Efficiency

 We say that the binary search algorithm runs

in log2 n time. (Also written as lg n)

 Lg n means the log to the base 2 of some

value of n.

 8 = 23 lg 8 = 3 16 = 24 lg 16 = 4

 There are no algorithms that run faster than lg

n time.

Sorting--Motivation

 So, the binary search is a very fast search

algorithm.

 But, the list has to be sorted before we can

search it with binary search.

 To be really efficient, we also need a fast sort

algorithm.

Searching and Sorting

Topics

 Algorithms and Reusability

 Algorithmic Classes: Example 1--Search

 Algorithmic Classes: Example 2--Sorting

 Bubble Sort

 Insertion Sort

Common Sort Algorithms

 Bubble Sort Heap Sort

 Selection Sort Merge Sort

 Insertion Sort Quick Sort

 There are many known sorting algorithms. Bubble sort is

the slowest, running in n2 time. Quick sort is the fastest,

running in n·lg n time.

 As with searching, the faster the sorting algorithm, the more

complex it tends to be.

 We will examine two sorting algorithms:

 Bubble sort

 Insertion sort

Bubble Sort - Let’s Do One!

 Sorting Demos

C

P

G

A

T

O

B

Bubble Sort Code

void bubbleSort (int a[] , int size)

{

 int i, j, temp;

 for (i = 0; i < size; i++) /* controls passes through the list */

 {

 for (j = 0; j < size - 1; j++) /* performs adjacent comparisons */

 {

 if (a[j] > a[j+1]) /* determines if a swap should occur */

 {

 temp = a[j]; /* swap is performed */

 a[j] = a[j + 1];

 a[j+1] = temp;

 }

 }

 }

}

http://www.cs.oswego.edu/~mohammad/classes/csc241/samples/sort/Sort2-E.html

Bubble Sort--Optimizations

 Can you think of quick-and-dirty tweaks to the

code to:

 Trim the inner loop to fewer turns?

 Stop the outer loop early in opportune cases?

25

Insertion Sort

 Insertion sort is slower than quicksort, but not

as slow as bubble sort, and it is easy to

understand.

 Insertion sort works the same way as

arranging your hand when playing cards.

 Out of the pile of unsorted cards that were dealt to

you, you pick up a card and place it in your hand in

the correct position relative to the cards you’re

already holding.

Arranging Your Hand

7

5 7

Arranging Your Hand

5 6

 7 5

7

5 6 7

K

5 6 7 8 K

Insertion Sort

 Unsorted - shaded

 Look at 2nd item - 5.

 Compare 5 to 7.

 5 is smaller, so move 5

 to temp, leaving

 an empty slot in

 position 2.

 Move 7 into the empty

 slot, leaving position 1

 open.

 Move 5 into the open

 position.

7

 7

5 7

5

7

K

5

 7

v

>

<

1

2

3

Insertion Sort (con’t)

 Look at next item - 6.

 Compare to 1st - 5.

 6 is larger, so leave 5.

 Compare to next - 7.

 6 is smaller, so move

 6 to temp, leaving an

 empty slot.

 Move 7 into the empty

 slot, leaving position 2

 open.

 Move 6 to the open

 2nd position.

7

 7

5

7

5

K 5

 7

v

>

<

1

2

3

 6

 7

 6 5

 6

5

Insertion Sort (con’t)

 Look at next item - King.

 Compare to 1st - 5.

 King is larger, so

 leave 5 where it is.

 Compare to next - 6.

 King is larger, so

 leave 6 where it is.

 Compare to next - 7.

 King is larger, so

 leave 7 where it is.

 7 K 5 6

Insertion Sort (con’t)

7

 7

5

7

5 K

5

 7

v

>

<

1

2

3

 6 7

 8

5

 6

5

 6

 6

 6

8

K 8

K

K 8

K

Merge Sort

 Concept is “divide and conquer”

 We first merge and order adjacent pairs of

entries

 We then merge and order our ordered-pairs

of doubles

 We then merge and order our ordered-quads

 Continue until we have only one pile

 How I sort exams by alphabetical order

33

Quicksort

 Fastest general sort known (so far)

 Basic premise:

 Pick random item (usually middle slot)

 Rearrange list to move lower items to top, higher

items to bottom

 Recurse (fancy CS term) on the upper and lower

subsets

34

How to Pick an Algorithm?

 Order of complexity is an important

consideration

 Average-case and “worst-case performance

 There is rarely a “best” algorithm – just often

“better ones”

 Will frequently start from some standard

algorithm and (hopefully) improve

 Understanding the details of an algorithm’s

behavior is critical to success
35

