
More Loops

CMSC 104, Fall 2012

John Y. Park

1

2

More Loops

Topics

 Counter-Controlled (Definite) Repetition

 Event-Controlled (Indefinite) Repetition

 for Loops

 do-while Loops

 Choosing an Appropriate Loop

 Break and Continue Statements

 Reading

 Sections 4.1 - 4.6, 4.8, 4.9

3

Counter-Controlled Repetition

 (Definite Repetition)

 If it is known in advance exactly how many

times a loop will execute, it is known as a

counter-controlled loop.

 int i = 1 ;

 while (i <= 10) {

 printf(“i = %d\n”, i) ;

 i = i + 1 ;

 }

4

Event-Controlled Repetition

(Indefinite Repetition)

 If it is NOT known in advance exactly how

many times a loop will execute, it is known as

an event-controlled loop.

 sum = 0 ;

 printf(“Enter an integer value: “) ;

 scanf(“%d”, &value) ;

 while (value != -1) {

 sum = sum + value ;

 printf(“Enter another value: “) ;

 scanf(“%d”, &value) ;

 }

5

Event-Controlled Repetition

(con’t)

 An event-controlled loop will terminate when

some event occurs.

 The event may be the occurrence of a

sentinel value, as in the previous example.

 There are other types of events that may

occur, such as reaching the end of a data file.

6

#include <stdio.h>

int main () {

 int i = 1 ; initialization of loop control variable

 /* count from 1 to 100 */

 while (i < 101) { test of loop termination condition

 printf (“%d “, i) ;

 i = i + 1 ; modification of loop control

 } variable

 return 0 ;

}

The 3 Parts of a Loop

7

The for Loop Repetition

Structure

 The for loop handles details of the counter-controlled
loop “automatically”.

 The initialization of the the loop control variable, the
termination condition test, and control variable
modification are handled in the for loop structure.

 for (i = 1; i <= 100; i = i + 1) {

 initialization modification

 } test

8

When Does a for Loop Initialize, Test

and Modify?

 Just as with a while loop, a for loop

 initializes the loop control variable before

beginning the first loop iteration,

 modifies the loop control variable at the very end

of each iteration of the loop, and

 performs the loop termination test before each

iteration of the loop.

 The for loop is easier to write and read for

counter-controlled loops.

9

A for Loop That Counts From 0

to 9

for (i = 0; i < 10; i = i + 1) {

 printf (“%d\n”, i) ;

}

10

We Can Count Backwards, Too

for (i = 9; i >= 0; i = i - 1) {

 printf (“%d\n”, i) ;

}

11

We Can Count By 2’s ... or 7’s

 … or Whatever

for (i = 0; i < 10; i = i + 2) {

 printf (“%d\n”, i) ;

}

12

The do-while Repetition

Structure

do {

 statement(s)

} while (condition) ;

 The body of a do-while is ALWAYS executed

at least once. Is this true of a while loop?

What about a for loop?

13

Example

do {

 printf (“Enter a positive number: “) ;

 scanf (“%d”, &num) ;

 if (num <= 0) {

 printf (“\nThat is not positive. Try again\n”) ;

 }

} while (num <= 0) ;

14

An Equivalent while Loop

printf (“Enter a positive number: “) ;

scanf (“%d”, &num) ;

while (num <= 0) {

 printf (“\nThat is not positive. Try again\n”) ;

 printf (“Enter a positive number: “) ;

 scanf (“%d”, &num) ;

}

 Note the priming read here—we didn’t need one in

the equivalent do-while loop

15

An Equivalent for Loop

•You can use a for loop for an event-controlled

loop… but it is very awkward:

printf (“Enter a positive number: “) ;

scanf (“%d”, &num) ;

for (; num <= 0;) {

 printf (“\nThat is not positive. Try again\n”) ;

 printf (“Enter a positive number: “) ;

 scanf (“%d”, &num) ;

}

16

So, Which Type of Loop Should I

Use?

 Use a for loop for counter-controlled

repetition.

 Use a while or do-while loop for event-

controlled repetition.

 Use a do-while loop when the loop must execute

at least one time.

 Use a while loop when it is possible that the loop

may never execute.

17

Nested Loops

 Loops may be nested (embedded) inside of

each other.

 Actually, any control structure (sequence,

selection, or repetition) may be nested inside

of any other control structure.

 It is common to see nested for loops.

18

Nested for Loops

 for (i = 0; i < 5; i = i + 1) {

 for (j = 0; j < 3; j = j + 1) {

 if (j % 2 == 0) {

 printf (“O”);

 } else {

 printf (“X”) ;

 }

 }

 printf (“\n”) ;

}

How many times is the “if”

statement executed?

What is the output ?

19

The break Statement

 The break statement can be used in

while, do-while, and for loops to cause

premature exit of the loop.

 THIS IS NOT A RECOMMENDED

CODING TECHNIQUE.

20

Example break in a for Loop

#include <stdio.h>

int main () {

 int i ;

 for (i = 1; i < 10; i = i + 1) {

 if (i == 5) {

 break ;

 }

 printf (“%d “, i) ;

 }

 printf (“\nBroke out of loop at i = %d.\n”, i) ;

 return 0 ;

}

OUTPUT:

 1 2 3 4

Broke out of loop at i = 5.

21

The continue Statement

 The continue statement can be used in

while, do-while, and for loops.

 It causes the remaining statements in

the body of the loop to be skipped for

the current iteration of the loop.

 THIS IS NOT A RECOMMENDED

CODING TECHNIQUE.

22

Example continue in a for

Loop

#include <stdio.h>

int main () {

 int i ;

 for (i = 1; i < 10; i = i + 1) {

 if (i == 5) {

 continue ;

 }

 printf (“%d ”, i) ;

 }

 printf (“\nDone.\n”) ;

 return 0 ;

}

OUTPUT:

1 2 3 4 6 7 8 9

Done.

