
More Loops

CMSC 104, Fall 2012

John Y. Park

1

2

More Loops

Topics

 Counter-Controlled (Definite) Repetition

 Event-Controlled (Indefinite) Repetition

 for Loops

 do-while Loops

 Choosing an Appropriate Loop

 Break and Continue Statements

 Reading

 Sections 4.1 - 4.6, 4.8, 4.9

3

Counter-Controlled Repetition

 (Definite Repetition)

 If it is known in advance exactly how many

times a loop will execute, it is known as a

counter-controlled loop.

 int i = 1 ;

 while (i <= 10) {

 printf(“i = %d\n”, i) ;

 i = i + 1 ;

 }

4

Event-Controlled Repetition

(Indefinite Repetition)

 If it is NOT known in advance exactly how

many times a loop will execute, it is known as

an event-controlled loop.

 sum = 0 ;

 printf(“Enter an integer value: “) ;

 scanf(“%d”, &value) ;

 while (value != -1) {

 sum = sum + value ;

 printf(“Enter another value: “) ;

 scanf(“%d”, &value) ;

 }

5

Event-Controlled Repetition

(con’t)

 An event-controlled loop will terminate when

some event occurs.

 The event may be the occurrence of a

sentinel value, as in the previous example.

 There are other types of events that may

occur, such as reaching the end of a data file.

6

#include <stdio.h>

int main () {

 int i = 1 ; initialization of loop control variable

 /* count from 1 to 100 */

 while (i < 101) { test of loop termination condition

 printf (“%d “, i) ;

 i = i + 1 ; modification of loop control

 } variable

 return 0 ;

}

The 3 Parts of a Loop

7

The for Loop Repetition

Structure

 The for loop handles details of the counter-controlled
loop “automatically”.

 The initialization of the the loop control variable, the
termination condition test, and control variable
modification are handled in the for loop structure.

 for (i = 1; i <= 100; i = i + 1) {

 initialization modification

 } test

8

When Does a for Loop Initialize, Test

and Modify?

 Just as with a while loop, a for loop

 initializes the loop control variable before

beginning the first loop iteration,

 modifies the loop control variable at the very end

of each iteration of the loop, and

 performs the loop termination test before each

iteration of the loop.

 The for loop is easier to write and read for

counter-controlled loops.

9

A for Loop That Counts From 0

to 9

for (i = 0; i < 10; i = i + 1) {

 printf (“%d\n”, i) ;

}

10

We Can Count Backwards, Too

for (i = 9; i >= 0; i = i - 1) {

 printf (“%d\n”, i) ;

}

11

We Can Count By 2’s ... or 7’s

 … or Whatever

for (i = 0; i < 10; i = i + 2) {

 printf (“%d\n”, i) ;

}

12

The do-while Repetition

Structure

do {

 statement(s)

} while (condition) ;

 The body of a do-while is ALWAYS executed

at least once. Is this true of a while loop?

What about a for loop?

13

Example

do {

 printf (“Enter a positive number: “) ;

 scanf (“%d”, &num) ;

 if (num <= 0) {

 printf (“\nThat is not positive. Try again\n”) ;

 }

} while (num <= 0) ;

14

An Equivalent while Loop

printf (“Enter a positive number: “) ;

scanf (“%d”, &num) ;

while (num <= 0) {

 printf (“\nThat is not positive. Try again\n”) ;

 printf (“Enter a positive number: “) ;

 scanf (“%d”, &num) ;

}

 Note the priming read here—we didn’t need one in

the equivalent do-while loop

15

An Equivalent for Loop

•You can use a for loop for an event-controlled

loop… but it is very awkward:

printf (“Enter a positive number: “) ;

scanf (“%d”, &num) ;

for (; num <= 0;) {

 printf (“\nThat is not positive. Try again\n”) ;

 printf (“Enter a positive number: “) ;

 scanf (“%d”, &num) ;

}

16

So, Which Type of Loop Should I

Use?

 Use a for loop for counter-controlled

repetition.

 Use a while or do-while loop for event-

controlled repetition.

 Use a do-while loop when the loop must execute

at least one time.

 Use a while loop when it is possible that the loop

may never execute.

17

Nested Loops

 Loops may be nested (embedded) inside of

each other.

 Actually, any control structure (sequence,

selection, or repetition) may be nested inside

of any other control structure.

 It is common to see nested for loops.

18

Nested for Loops

 for (i = 0; i < 5; i = i + 1) {

 for (j = 0; j < 3; j = j + 1) {

 if (j % 2 == 0) {

 printf (“O”);

 } else {

 printf (“X”) ;

 }

 }

 printf (“\n”) ;

}

How many times is the “if”

statement executed?

What is the output ?

19

The break Statement

 The break statement can be used in

while, do-while, and for loops to cause

premature exit of the loop.

 THIS IS NOT A RECOMMENDED

CODING TECHNIQUE.

20

Example break in a for Loop

#include <stdio.h>

int main () {

 int i ;

 for (i = 1; i < 10; i = i + 1) {

 if (i == 5) {

 break ;

 }

 printf (“%d “, i) ;

 }

 printf (“\nBroke out of loop at i = %d.\n”, i) ;

 return 0 ;

}

OUTPUT:

 1 2 3 4

Broke out of loop at i = 5.

21

The continue Statement

 The continue statement can be used in

while, do-while, and for loops.

 It causes the remaining statements in

the body of the loop to be skipped for

the current iteration of the loop.

 THIS IS NOT A RECOMMENDED

CODING TECHNIQUE.

22

Example continue in a for

Loop

#include <stdio.h>

int main () {

 int i ;

 for (i = 1; i < 10; i = i + 1) {

 if (i == 5) {

 continue ;

 }

 printf (“%d ”, i) ;

 }

 printf (“\nDone.\n”) ;

 return 0 ;

}

OUTPUT:

1 2 3 4 6 7 8 9

Done.

