
Arithmetic Operators

in C

CMSC 104, Fall 2012

John Y. Park

1

2

Arithmetic Operators

Topics

 Arithmetic Operators

 Assignment Operators

 Operator Precedence

 Evaluating Arithmetic Expressions

 Incremental Programming

3

Arithmetic Operators in C

 Binary Operators
 E.g.:
new_value = height + margin;

area = length * width;

 Unary Operators

 E.g.:
new_value = -old_value;

negation = !true_value;

4

Arithmetic Operators in C

 Name Operator Example

 Addition + num1 + num2

 Subtraction - initial - spent

 Multiplication * fathoms * 6

 Division / sum / count

 Modulus % m % n

Types and Promotion

 Can mix types in numerical expressions

 Hierarchy of types

 By precision: int -> float

 By size: short -> long

 Lower size/precision is promoted to greater

size/precision before operation is applied

 Result is also of promoted type

5

Types and Promotion

 E.g.:

 int num_sticks = 5;

double avg_stick_length = 4.5;

double total_length;

total_length = num_sticks * avg_stick_length;

num_sticks would be converted to double-precision,

then multiplied by avg_stick_length

6

7

Division

 If both operands of a division expression are

integers, you will get an integer answer. The

fractional portion is thrown away.

 Examples : 17 / 5 = 3

 4 / 3 = 1

 35 / 9 = 3

8

Division (con’t)

 Division where at least one operand is a

floating point number will produce a floating

point answer.

 Examples : 17.0 / 5 = 3.4

 4 / 3.2 = 1.25

 35.2 / 9.1 = 3.86813

 What happens? The integer operand is

temporarily converted to a floating point, then

the division is performed.

9

Division (con’t)

 Example1 :

 int my_integer = 5;

int my_product;

my_product = (my_integer / 2) * 2.0;

/* What will following print out? */

printf(“my_product is %d\n”, my_product);

 /* What about this? */

my_product = (my_integer / 2.0) * 2;

printf(“my_product is %d\n”, my_product);

10

Division By Zero

 Division by zero is mathematically undefined.

 If you allow division by zero in a program, it

will cause a fatal error. Your program will

terminate execution and give an error

message.

 Non-fatal errors do not cause program

termination, just produce incorrect results.

11

Modulus

 The expression m % n yields the integer

remainder after m is divided by n.

 Modulus is an integer operation -- both

operands MUST be integers.

 Examples : 17 % 5 = 2

 6 % 3 = 0

 9 % 2 = 1

 5 % 8 = 5

12

 Uses for Modulus

 Used to determine if an integer value is even

or odd

 5 % 2 = 1 odd 4 % 2 = 0 even

 If you take the modulus by 2 of an integer, a

result of 1 means the number is odd and a

result of 0 means the number is even.

 The Euclid’s GCD Algorithm (done earlier)

13

Arithmetic Operators

Rules of Operator Precedence

 Operator(s) Precedence & Associativity

 () Evaluated first. If nested

 (embedded), innermost first. If

 on same level, left to right.

 * / % Evaluated second. If there are

 several, evaluated left to right.

 + - Evaluated third. If there are

 several, evaluated left to right.

 = Evaluated last, right to left.

14

Using Parentheses

 Use parentheses to change the order in which
an expression is evaluated.

 a + b * c Would multiply b * c first,
 then add a to the result.

 If you really want the sum of a and b to be
multiplied by c, use parentheses to force the
evaluation to be done in the order you want.

 (a + b) * c

 Also use parentheses to clarify a complex
expression.

15

Practice With Evaluating

Expressions

 Given integer variables a, b, c, d, and e,

where a = 1, b = 2, c = 3, d = 4,

 evaluate the following expressions:

 a + b - c + d

 a * b / c

 1 + a * b % c

 a + d % b - c

 e = b = d + c / b - a

16

Good Programming Practice

 It is best not to take the “big bang” approach to

coding.

 Use an incremental approach by writing your code in

incomplete, yet working, pieces.

 For example, for your projects,

 Don’t write the whole program at once.

 Just write enough to display the user prompt on the

screen.

 Get that part working first (compile and run).

 Next, write the part that gets the value from the

user, and then just print it out.

17

Good Programming Practice

(con’t)

 Get that working (compile and run).

 Next, change the code so that you use the value

in a calculation and print out the answer.

 Get that working (compile and run).

 Continue this process until you have the final

version.

 Get the final version working.

 Bottom line: Always have a working version

of your program!

