
Variables in C

CMSC 104, Fall 2012

John Y. Park

1

2

Variables in C

Topics

 Naming Variables

 Declaring Variables

 Using Variables

 The Assignment Statement

3

What Are Variables in C?

 Variables in C have the same meaning as

variables in algebra. That is, they represent

some unknown, or variable, value.

x = a + b

z + 2 = 3(y - 5)

 Remember that variables in algebra are

represented by a single alphabetic character.

4

Legal Identifiers in C

 Another name for a variable in C is an identifier

 Variables in C may be given representations

containing multiple characters. But there are

rules for these representations.

 Legal variable names in C

 May only consist of letters, digits, and underscores

 May be as long as you like, but only the first 31

characters are significant

 May not begin with a number

 May not be a C reserved word (keyword)

5

Reserved Words (Keywords) in C

 auto break

 case char

 const continue

 default do

 double else

 enum extern

 float for

 goto if

 int long

 register return

 short signed

 sizeof static

 struct switch

 typedef union

 unsigned void

 volatile while

6

CMSC104 Naming Conventions

 C programmers generally agree on the

following conventions for naming variables.

 Begin variable names with lowercase letters

 Use meaningful identifiers (names)

 Separate “words” within identifiers with underscores

or mixed upper and lower case.

 Examples: surfaceArea surface_Area

 surface_area

 Be consistent!

7

Case Sensitivity

 C is case sensitive

 It matters whether an identifier, such as a variable

name, is uppercase or lowercase.

 Example:

 area

 Area

 AREA

 ArEa

 are all seen as different variables by the compiler.

8

Legal Identifiers vs. Naming

Conventions

 Legal identifiers refer to the restrictions C

places on naming identifiers, i.e. variable

names cannot begin with a number.

 Naming conventions refer to the standards

you must follow for this course, i.e. all

variable names must begin with lowercase.

9

Which Are Legal Identifiers?

 AREA 3D

 lucky*** num45

 Last-Chance #values

 x_yt3 pi

 num$ %done

 area_under_the_curve

10

Which follow the CMSC104 Naming

Conventions?

 Area person1

 Last_Chance values

 x_yt3 pi

 finaltotal numChildren

 area_under_the_curve

11

Declaring Variables

 Before using a variable, you must give the

compiler some information about the variable;

i.e., you must declare it.

 The declaration statement includes the

data type of the variable.

 Examples of variable declarations:

 int meatballs ;

 float area ;

12

Declaring Variables (con’t)

 When we declare a variable

 Space is set aside in memory to hold a value of the

specified data type

 That space is associated with the variable name

 That space is associated with a unique address

 Visualization of the declaration

 int meatballs ;

 type name

meatballs

FE07

 garbage

address

13

More About Variables

C has three basic predefined data types:

 Integers (whole numbers)

 int, long int, short int, unsigned int

 Floating point (real numbers)

 float, double

 Characters

 char

 At this point, you need only be concerned with

the data types that are bolded.

14

Using Variables: Initialization

 Variables may be be given initial values, or

initialized, when declared. Examples:

 int length = 7 ;

 float diameter = 5.9 ;

 char initial = ‘A’ ;

7

5.9

‘A’

length

diameter

initial

15

Using Variables: Initialization

(con’t)

 Do not “hide” the initialization

 put initialized variables on a separate line

 a comment is always a good idea

 Example:

 int height ; /* rectangle height */

 int width = 6 ; /* rectangle width */

 int area ; /* rectangle area */

 NOT int height, width = 6, area ;

16

Using Variables: Assignment

 Variables may have values assigned to them through the

use of an assignment statement.

 Such a statement uses the assignment operator =

 This operator does not denote equality. It assigns the

value of the righthand side of the statement (the

expression) to the variable on the lefthand side.

 Examples:

 diameter = 5.9 ; area = length * width ;

 Note that only single variables may appear on the lefthand

side of the assignment operator.

17

Example: Declarations and

Assignments

1. #include <stdio.h>

2. int main()
3. {

4. int inches, feet, fathoms ;

5. fathoms = 7 ;

6. feet = 6 * fathoms ;

7. inches = 12 * feet ;

garbage

fathoms

garbage
feet

garbage

inches

feet

fathoms

7

42

504

inches

18

Example: Declarations and

Assignments (cont’d)

8. printf (“Its depth at sea: \n”) ;
9. printf (“ %d fathoms \n”, fathoms) ;
10. printf (“ %d feet \n”, feet) ;
11. printf (“ %d inches \n”, inches) ;

12. return 0 ;
13. }

19

Enhancing Our Example

 What if the depth were really 5.75 fathoms?

Our program, as it is, couldn’t handle it.

 Unlike integers, floating point numbers can

contain decimal portions. So, let’s use

floating point, rather than integer.

 Let’s also ask the user to enter the number of

fathoms, rather than “hard-coding” it in.

20

Enhanced Program

1. #include <stdio.h>

2. int main ()

3. {

4. float inches, feet, fathoms ;

5. printf (“Enter the depth in fathoms : ”) ;

6. scanf (“%f”, &fathoms) ;

7. feet = 6 * fathoms ;

8. inches = 12 * feet ;

9. printf (“Its depth at sea: \n”) ;

10. printf (“ %f fathoms \n”, fathoms) ;

11. printf (“ %f feet \n”, feet) ;

12. printf (“ %f inches \n”, inches) ;

13. return 0 ;

14. }

NOTE: This program does not adhere to the CMSC104 coding standards

21

Final “Clean” Program

1. #include <stdio.h>

2.

3. int main()

4. {

5. float inches ; /* number of inches deep */

6. float feet ; /* number of feet deep */

7. float fathoms ; /* number of fathoms deep */

8.

9. /* Get the depth in fathoms from the user */

10. printf (“Enter the depth in fathoms : ”);

11. scanf (“%f”, &fathoms) ;

22

Final “Clean” Program (con’t)

12. /* Convert the depth to inches */

13. feet = 6 * fathoms ;

14. inches = 12 * feet ;

15.

16. /* Display the results */

17. printf (“Its depth at sea: \n”) ;

18. printf (“ %f fathoms \n”, fathoms) ;

19. printf (“ %f feet \n”, feet);

20. printf (“ %f inches \n”, inches);

21.

22. return 0 ;

23. }

23

Good Programming Practices

 Place a comment before each logical “chunk” of

code describing what it does.

 Do not place a comment on the same line as

code (with the exception of variable

declarations).

 Use spaces around all arithmetic and

assignment operators.

 Use blank lines to enhance readability.

24

Good Programming Practices

(con’t)

 Place a blank line between the last variable

declaration and the first executable statement

of the program.

 Indent the body of the program 3 to 4 tab

stops -- be consistent!

