
Introduction to C

CMSC 104, Fall 2012

John Y. Park

1

2

Introduction to C

Topics

 Brief History of Programming Languages & C

 The Anatomy of a C Program

 Compilation

 Using the gcc Compiler

 104 C Programming Standards and Indentation Styles

History of Programming

Languages & C

 Machine code (aka “binary”)

 Somehow enter raw sequence of binary patterns

1011010111001011

1011010110101010

 Assembly “language”

 Gave human-friendly syntax to machine code:

MOV 1200, R0

SUB 1202, R0

MOV R0, 1200

3

History of Programming

Languages & C

 Early high-level languages

 COBOL

 SUBTRACT B FROM A GIVING C

 MULTIPLY C BY 2 GIVING D

 FORTRAN

S1 = 3.0

S2 = 4.0

H = SQRT((S1 * S1) + (S2 * S2))

4

History of Programming

Languages & C

 Another early high-level language

 LISP

 (lambda (a)

 (mapcar (func ‘+)

 (cons (car (car a)) (car (cadr a)))))

5

History of C

 Derived from… (wait for it…) “B”!

 (“B” itself was derived from the BCPL language)

 Design goals were for C to be:

 Efficient

 Close to the machine

 I.e., it could directly manipulate the CPU’s memory to

control hardware-level functions

 Structured

 A true high-level language with sophisticated control

flow, data structures

 Has goto’s—but probably will never use them! 6

History of C

 UNIX was recoded in C

 PDP-11 was a machine with 64 Kilobytes of

addressable memory

 (my laptop has 60,000x the memory!)

 C is written in C!

 Of course, first versions were written in Assembler

 Ritchie had great inspiration for a Trojan horse

7

Does Programming Language

Choice Matter?

 Short answer: “Yes, but…”

 C:
 main() {

 printf("hello, world");

}

 COBOL:
 MAIN SECTION

DISPLAY “hello, world“

STOP RUN.

 Fortran77:
 PROGRAM HELLO

PRINT*, ‘hello, world‘

END

 Lisp:
 (defun helloworld ()

 (print “hello, world"))

 English:

 Hello, world.

 Spanish:

 Hola mundo

 French:

 Salut le Monde

 Greek:

 Γεια σου κόσμε

8

9

Writing C Programs

 A programmer uses a text editor (not the same as

a word processor!) to create or modify files

containing C code.

 Code is also known as source code.

 A file containing source code is called a source file.

10

A Simple C Program

 One of the first C program examples

1. int main () {

2. printf (“hello, world”) ;

3. }

A Simple C Program…

to a Computer

m a i n () { \n \t p r i n f (“

h e l l o , w o r l d “) ; \n

} - - - - - - - - - - - - - - -

11

• So, after a C source file has been created, the programmer

must invoke the C compiler before the program can be

executed (run).

12

3 Stages of Compilation

Stage 1: Preprocessing

 Main purposes:

 Centralize reused chunks of code

 Allow “extensions” to the language

 Make code more portable

 Performed by a program called the preprocessor

 Modifies the source code (in RAM) according to

preprocessor directives (preprocessor commands)

embedded in the source code

 The source code as stored on disk is not modified.

 “Include files” have names of form “*.h”

13

3 Stages of Compilation (con’t)

Stage 2: Compilation

 Performed by a program called the compiler

 Translates the preprocessor-modified source code

into object code (machine code)

 Checks for syntax errors and warnings

 Saves the object code to a disk file, if instructed to

do so (we will not do this).

 If any compiler errors are received, no object code file

will be generated.

 An object code file will be generated if only warnings,

not errors, are received.

14

3 Stages of Compilation (con’t)

Stage 3: Linking

 Combines the program object code with other

object code to produce the executable file.

 The other object code can come from the Run-

Time Library, other libraries, or object files that you

have created.

 Saves the executable code to a disk file. On the

Linux system, that file is called a.out.

 If any linker errors are received, no executable file will

be generated.

Program Development Using gcc

15

Source File pgm.c

Program Object Code File pgm.o

Executable File a.out

Preprocessor

Modified Source Code in RAM

Compiler

Linker

Other Object Code Files (if any)

Editor

16

A Simple C Program

1. /* Filename: hello.c

2. * Author: Brian Kernighan & Dennis Ritchie

3. * Date written: ?/?/1978

4. * Description: This program prints the greeting

 “Hello, World!”

5. */

6. #include <stdio.h>

7. int main ()

8. {

9. printf (“Hello, World!\n”) ;

10. return 0 ;

11. }

17

Anatomy of a C Program

 program header comment

 preprocessor directives (if any)

 int main ()

 {

 statement(s)

 return 0 ;

 }

18

Program Header Comment

 A comment is descriptive text used to help a

reader of the program understand its content.

 All comments must begin with the characters /*

and end with the characters */

 These are called comment delimiters

 The program header comment always comes

first.

 Look at the class web page for the required

contents of our header comment.

19

Preprocessor Directives

 Lines that begin with a # in column 1 are called

preprocessor directives (commands).

 Example: the #include <stdio.h> directive

causes the preprocessor to include a copy of the

standard input/output header file stdio.h at this

point in the code.

 This header file was included because it contains

information about the printf () function that is

used in this program.

20

int main ()

 Every program must have a function called

main. This is where program execution

begins.

 main() is placed in the source code file as the

first function for readability.

 The reserved word “int” indicates that main()

returns an integer value.

 The parentheses following “main” indicate

that it is a function.

21

The Function Body

 A left brace (curly bracket) -- { -- begins the

body of every function. A corresponding right

brace -- } -- ends the function body.

 The style is to place these braces on separate

lines in column 1 and to indent the entire function

body 3 to 4 spaces.

22

printf (“Hello, World!\n”) ;

 This line is a C statement.

 It is a call to the function printf () with a

single argument (parameter), namely the

string “Hello, World!\n”.

 Even though a string may contain many

characters, the string itself should be thought

of as a single quantity.

 Notice that this line ends with a semicolon.

All statements in C end with a semicolon.

23

return 0 ;

 Because function main() returns an integer value, there

must be a statement that indicates what this value is.

 The statement

return 0 ;

indicates that main() returns a value of zero to

the operating system.

 A value of 0 indicates that the program successfully

terminated execution.

 Do not worry about this concept now. Just remember to

use the statement.

24

Another C Program

1. /***

2. ** File: message.c

3. ** Author: Joe Student

4. ** Date: 9/15/06

5. ** Section: 0101

6. ** E-mail: jstudent22@umbc.edu

7. **

8. ** This program prints a cool message to the user.

9. **/

25

Another C Program (con’t)

10. #include <stdio.h>

11. int main()

12. {

13. printf(“Programming in CMSC104 is\nfun. “) ;

14. printf(“C is a really cool language!\n”) ;

15. return 0 ;

16. }

What will the output be?

26

Using the C Compiler at UMBC

 Invoking the compiler is system dependent.

 At UMBC, we have two C compilers available, cc

and gcc.

 For this class, we will use the gcc compiler as it is

the compiler available on the Linux system.

27

Invoking the gcc Compiler

 At the prompt, type

 gcc -Wall program.c –o program.out

 where program.c is the C program source

file.

 -Wall is an option to turn on all compiler

warnings (best for new programmers).

28

The Result : a.out

 If there are no errors in pgm.c, this command

produces an executable file, which is one that

can be executed (run).

 If you do not use the “-o” option, the compiler

names the executable file a.out .

 To execute the program, at the prompt, type

 program.out

 Although we call this process “compiling a

program,” what actually happens is more

complicated.

29

Good Programming Practices

 C programming standards and indentation styles are

available on the 104 course Web page.

 You are expected to conform to these standards for

all programming projects in this class and in CMSC

201. (This will be part of your grade for each project!)

 The program just shown conforms to these standards,

but is uncommented (we’ll discuss commenting your

code later).

 Subsequent lectures will include more “Good

Programming Practices” slides.

