
Operating Systems

and

Using Linux

CMSC 104, Fall 2012

John Y. Park

1

2

Operating Systems and Using

Linux

Topics

 What is an Operating System?

 Linux Overview

 Frequently Used Linux Commands

3

What is an Operating System?

 A computer program that:

 Controls how the CPU, memory and I/O devices

work together to execute programs

 Performs many operations, such as:

 Allows you to communicate with the computer (tell it

what to do)

 Controls access (login) to the computer

 Keeps track of all processes currently running

 Often referred to as simply OS

What is an Operating System?

 Provides a uniform interface for users and

programs to access changing, evolving

hardware (H/W)

 Very different H/W platforms can support a

common OS (partially custom-written, of

course) (standard “PC”, Sony PSP can both

run Linux)

 One H/W platform can support multiple OSs

 E.g.: Latest Macs can run MacOS or Windows

4

5

How Do I Communicate With

the Computer Using the OS?

 You communicate using the particular OS’s

user interface.

 Graphical User Interface (GUI) – Windows,

Mac OS, Linux

 Command-driven interface - DOS, UNIX,

Linux

 We will be using the Linux operating system,

which is very similar to UNIX. Notice that it is

listed as both GUI and Command-driven.

6

GUI vs. Command-driven

 We will be using both the GUI version of

Linux and the Command-driven Interface.

 When you connect to GL through TeraTerm,

you are using only the Command-driven

Interface.

 When you reboot the computer into Linux,

you will use both the GUI and the Command-

driven Interface.

7

Example of Command-driven

Screenshot of connection to linux3.gl.umbc.edu

8

Example of GUI

Screenshot of Fedora 7

9

Another Example of GUI

Screenshot of Red Hat Enterprise Linux (RHEL) 5

10

How Do I Communicate With the

Computer Using the OS? (con’t)

 When you log in to the Linux system here, a user prompt will be
displayed:

 where # is the number of the Linux server to which you

 have connected. You may use any of the Linux servers:

 linux1, linux2 or linux3.

 The number in the brackets will change as you work. It is the
“number” of the command that you are about to type.

 If this prompt is not on the screen at any time, you are not
communicating with the OS.

linux#[1]% _

11

Linux Overview

 Files and Filenames

 Directories and Subdirectories

 Abolute & Relative Pathnames, ‘.’, and ‘..’

 Why a Command Line?

 Frequently Used Commands

 The Shell(s)

 I/O Redirection and Pipes

 Command Line Editing &

 History

12

Files

 A file is a sequence of bytes.

 It can be created by

 a text editor (XEmacs or Notepad)

 a computer program (such as a C program)

 It may contain a program, data, a document,

or other information .

 Files that contain other files are called

directories (sometimes called folders).

13

Linux Filenames

 Restrictions
 Typically do not have spaces or other reserved characters

 Have a maximum length (typically 255 characters but who
wants to type that much!)

 Are case sensitive

 For this class, you should stick with filenames that
contain only letters (uppercase or lowercase),
numbers, and the underscore (_) or hypen (-). No
spaces!

 Some examples: firefox.exe, things2do.txt,
dinner_menu.pdf

14

Directories

 Directories contain files or other directories

called subdirectories. They may also be

empty.

 Directories are organized in a hierarchical

fashion.

 They help us to keep our files organized.

15

Example Directory Tree

 /afs/umbc.edu/users/j/d/jdoe28/home/

Mail/ recipes/ courses/

 pies/ cookies/ CMSC104/

apple.txt peach.txt choc_chip.txt

16

More Directories

 Your home directory is where you are located when
you log in

 (e.g., /afs/umbc.edu/users/j/d/jdoe28/home/).

 The current directory is where you are located at any
time while you are using the system.

 The / (pronounced “slash”) is the root directory in Linux.

 Files within the same directory must be given unique
names.

 Paths allow us to give the same name to different files
located in different directories.

 Each running program has a current directory and all
filenames are implicitly assumed to start with the name
of that directory unless they begin with a slash.

17

Absolute Path

 The absolute path is a path that contains the
root directory and all other subdirectories you
need to access the file

 It points to the same location in the directory
tree regardless of the current working
directory

 An example of an absolute path

/afs/umbc.edu/users/j/d/jdoe28/home/recipes/

Starts with

/

18

Relative Path

 The relative path is a partial path to a file in

relation to the current working directory

 If inside of the home directory in the previous

directory example, a relative path would be

recipes/cookies/

Does not

start with /

19

Subdirectories

 Are used for organizing your files

 For example,

 make a subdirectory for CMSC104

 make subdirectories for each project

 CMSC104/

hw1/ hw3/ ... proj4/

20

Moving in the Directory Tree

 . (dot) is the current directory.

 . . (dot-dot) is the parent directory.

 Use the Linux command cd to change

directories.

 Use “..” to move up the tree (to “parent

directory”)

 Use the directory name to move down (to a

“subdirectory” or “child directory”).

 Use the absolute path to move anywhere.

21

Why a GUI?

 GUIs are sometimes better, because:

 Give a good sense of “where I am”

 Succinct visual summary of small sets

 Easier to find “forgotten” target, then act on it

 Simple to execute default behavior

 Otherwise, often resort to complex “environments”

Why a Command Line?

 Command lines are sometimes better,

because:

 Easier to operate on large sets

 Convenient if you remember filenames

(and you should)

 Can act on multiple objects in disparate locations

 Easier if no simple default behavior

22

23

What is a “Shell”?

 The “most important program in the OS”

 Your primary means of controlling the OS

 On Linux, just another program!

 Can use other shells: sh, csh, bash, tcsh

 Can be programmed to do complex tasks

 Every command (almost) is just running

another program

 Main differences are in syntax, ease of use

Common Commands

 First things first: help!

 “man” is for manual

 Directory operations:

 pwd, cd, mkdir, rmdir

 File manipulation:

 ls, rm, cp, mv, cat

 File perusal

 cat, more, less, head, tail, file

24

Common Commands

 File editing

 ed, emacs, sed

 Misc (pine, find, etc.)

 ctrl-c

 References:
 Linux man page

 Links from the 104 homepage

 Books and the Internet

25

26

Wildcard Characters

 Can use patterns to specify, or match, filenames.

 Useful when you don’t remember exact name, or it is long

 Two wildcard characters are * and ?

 ? is used to represent any single character.

 For example, ls hw?.txt would match the files hw1.txt

and hw2.txt but not hw123.txt

 * is used to represent 0 or more characters.

 For example, ls hw*.txt would match the files hw1.txt

and hw2.txt, as well as hw.txt, hw123.txt and
hw_assignment.txt

27

I/O Redirection

 All programs read from standard “channel”,

write to standard “channel”

 Called “file descriptors”

 Shell can manipulate these file descriptors

before executing command (i.e., program)

 Devices and files treated similarly

 “<“: redirect input

 “>”: redirect output

28

I/O Redirection

 Examples:

 % ls > my-files.txt

 % wc < my-files.txt

29

Pipes

 Communications channel between two programs
 Can think of as a temporary file that first program writes to,

second program then reads from

 Syntax:

% program1 | program2

 Example:

 % ls | wc

 will give you the number of files you have

30

Command Line Editing

 Allows command to be edited before being

executed

 Uses subset of emacs commands:

 Ctl-B, Ctl-F, Ctl-A, Ctl-E, <Backspace>, Ctl-D

 Allows previous commands to be recalled,

then optionally edited

 Very convenient for:

 Typos

 Repetitive commands

