Machine Architecture and Number Systems

CMSC 104, Lecture 2
John Y. Park

Why Are We in this Course?

Remember:
"There are no stupid questions: just stupid people who don't know they should be asking something.

Machine Architecture and Number Systems

Topics

- Major Computer Components
- Bits, Bytes, and Words
- The Decimal Number System
- The Binary Number System
- Converting from Binary to Decimal
- Converting from Decimal to Binary
- The Hexadecimal Number System

Some People Think A Computer is...
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Some People Think A Computer is...
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Major Computer Components

- Central Processing Unit (CPU)
- Bus
- Main Memory (RAM)
- Secondary Storage Media \qquad
- I/ O Devices

The Bus

- Computer components are connected by a bus.
- A bus is a group of parallel wires that carry control signals and data between components.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Main Memory

- Main memory holds information such as computer programs, numeric data, or documents created by a word processor.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Main Memory (con't)

- Main memory is made up of capacitors.
- If a capacitor is charged, then its state is said to be 1, or ON.
- We could also say the bit is set.
- If a capacitor does not have a charge, then its state is said to be $\mathbf{0}$, or OFF.
- We could also say that the bit is reset or cleared.
\qquad

Main Memory (con't)

- Memory is divided into cells, where each cell \qquad contains 8 bits (a 1 or a 0). Eight bits is called a byte.
- Each of these cells is uniquely numbered.
- The number associated with a cell is known as its address.
- Main memory is volatile storage. That is, if power is lost, the information in main memory is lost.

Main Memory (con't)

- Other computer components can
- get the information held at a particular address in memory, known as a READ,
- or store information at a particular address in memory, known as a WRITE.
- Writing to a memory location alters its contents.
- Reading from a memory location does not alter its contents.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Main Memory (con't)

- All addresses in memory can be accessed in the same amount of time.
- We do not have to start at address 0 and read everything until we get to the address we really want (sequential access).
- We can go directly to the address we want and access the data (direct or random access).
- That is why we call main memory RAM (Random Access Memory).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Main Memory (con't)

- "Stupid Question" \#1:

Why does adding more RAM make computers faster (sometimes)?

- Answer is much more complicated than you think: has to do with swapping/paging, multiprocessing
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Secondary Storage Media

- Disks -- floppy, hard, removable (random access) \qquad
- Tapes (sequential access)
- CDs (random access)
- DVDs (random access)
- Secondary storage media store files that contain
- computer programs
- data
- other types of information
- This type of storage is called persistent (permanent) storage because it is non-volatile.

I/O (Input/Output) Devices

\qquad
\qquad
\qquad
\qquad
\qquad

- Information input and output is handled by I/O (input/output) devices.
- More generally, these devices are known as peripheral devices.
- Examples:
- monitor
- keyboard
- mouse
- disk drive (floppy, hard, removable)

- CD or DVD drive
- printer
- scanner
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Opening
MS Word
- Use the mouse to select MS Word
- The CPU requests the MS Word application
main merd is loaded from the hard drive to
- The CPU reads instructions from main
memory and executes them one at a time
- MS Word is displayed on your monitor ${ }^{19}$

Bits, Bytes, and Words

- A bit is a single binary digit (a 1 or 0).
- A byte is 8 bits (usually... but not always!)
- A word is 32 bits or 4 bytes
- Long word $=8$ bytes $=64$ bits
- Quad word = 16 bytes = 128 bits
- Programming languages use these standard number of bits when organizing data storage and access.
- What do you call 4 bits? 2 bits?
(hint: it is a small byte)
${ }^{20}$

Number Systems

- The most elementary "number system" is unary:
"I have this many things."
- An interesting problem:

If you had $1+1+1$ things, and you gave away $1+1+1$ of them, how would you answer the question:
"How many do you have left?"

- Unary counting is not a symbolic number system.

Unary Numbers are Not Practical

\qquad
\qquad

Number Systems

- The on and off states of the capacitors in RAM can be thought of as the values 1 and 0 , respectively.
- Therefore, thinking about how information is stored in RAM requires knowledge of the binary (base 2) number system.
- Let's review the decimal (base 10) number system first.

The Decimal Number System

- The decimal number system is a positional number system.
- Example:

$\underline{5} \underline{6} \underline{2} 1$	$1 \times 10^{0}=$	1
$10^{3} 10^{2} 10^{1} 10^{\circ}$	$2 \times 10^{1}=$	20
	$6 \times 10^{2}=$	600
	$5 \times 10^{3}=5000$	

\qquad

The Decimal Number System

- The decimal number system is also known as base 10. The values of the positions are calculated by taking 10 to some power.
- Why is the base 10 for decimal numbers? - Because we use 10 digits, the digits 0 through 9 .
- The decimal number system, and other number systems, are symbolic representations of concrete quantities

The Binary Number System

\qquad

- The binary number system is also known as \qquad base 2. The values of the positions are calculated by taking 2 to some power.
- Why is the base 2 for binary numbers?
- Because we use 2 digits, the digits 0 and 1 .

The Binary Number System

- The binary number system is also a positional numbering system.
- Instead of using ten digits, 0-9, the binary system uses only two digits, 0 and 1 .
- Example of a binary number and the values of the positions:

$$
\frac{1}{2^{6}} \frac{0}{2^{5}} \frac{0}{2^{4}} \frac{1}{2^{3}} \frac{1}{2^{2}} \frac{0}{2^{1}} \frac{1}{2^{0}}
$$

Converting from Binary to Decimal

$\begin{array}{llllll\|l} \frac{1}{2^{6}} & \underline{0} & \underline{0} & \frac{1}{2^{5}} & \frac{1}{2^{4}} & \frac{0}{2^{3}} & \frac{0}{2^{2}} \\ 2^{1} & \frac{1}{2^{0}} \\ \hline \end{array}$		$1 \times 20=1$
		$0 \times 2^{1}=0$
		$1 \times 2^{2}=4$
$2^{0}=1$	$2^{4}=16$	$1 \times 2^{3}=8$
$2^{1}=2$	$2^{5}=32$	$0 \times 2^{4}=0$
$2^{2}=4$	$2^{6}=64$	$0 \times 2{ }^{5}=0$
$2^{3}=8$	$2^{7}=128$	$1 \times 2^{6}=\underline{64}$

Converting from Binary to Decimal

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Practice conversions:
Binary
Decimal
11101
1010101
100111
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Geek Joke \#1

- Seen on a random T-shirt:

There are 10 kinds of people in the world:
Those who understand binary
...and those who don't
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Converting from Decimal to Binary

- Make a list of the binary place values up to the number being converted. (In the example below, 2^{5} is the largest possible leftmost position)
- Perform successive divisions by 2, placing the remainder of 0 or 1 in each of the positions from right to left.
- Continue until the quotient is zero.
- Example: 42_{10}

Converting from Decimal to Binary

Practice conversions:
Decimal Binary
59
82
175

Working with Large Numbers

0101000010100111 = ?

- Humans can't work well with binary numbers; there are too many digits to deal with.
- Memory addresses and other data can be quite large. Therefore, we sometimes use the hexadecimal and octal number systems.

The Hexadecimal Number System

- The hexadecimal number system is also known as base 16. The values of the positions are calculated by taking 16 to some power.
- Why is it base 16 for hexadecimal numbers ?
- Because we use 16 symbols, the digits 0 through 9 and the letters A through F.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Hexadecimal Number System
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
35

The Hexadecimal Number System

- Example of a hexadecimal number and the values of the positions:
$\underline{3} \underline{C} \underline{8} \underline{B} \underline{0} \underline{1}$
$16^{6} 16^{5} 16^{4} 16^{3} 16^{2} 16^{1} 16^{0}$ \qquad
\qquad
\qquad
\qquad

The Octal Number System

- Example of an octal number and the values of the positions:

$$
\begin{array}{llllll}
\frac{1}{8^{5}} & \underline{3} & \underline{0} & \underline{0} & \underline{0} & \underline{2} \\
8^{3} & \frac{4}{8} & \frac{4}{8} & 8^{0}
\end{array}
$$

- Binary equivalent:
$1011000000010100=$ 1011000000010100

Example of Equivalent Numbers

\qquad

Binary: 1101000010100111_{2}

Octal: $1^{150247}{ }_{8}$

Decimal: 53415_{10}

Hexadecimal: DOA7 ${ }_{16}$

Notice how the number of digits gets smaller as the base increases.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

But Why Use Hex or Octal?

- Simple: can divide binary numbers into equalsized sets of bits, then convert directly
- This is not true of decimal-to\{binary,hex,octal\}

