
1

Relational & Logical
Operators, if and switch

Statements

2

Topics

� Relational Operators and Expressions

� The if Statement

� The if-else Statement

� Nesting of if-else Statements

� switch

� Logical Operators and Expressions

� Truth Tables

3

Relational Operators

< less than
> greater than
<= less than or equal to
>= greater than or equal to
== is equal to
!= is not equal to

� Relational expressions evaluate to true or false.

� All of these operators are called binary operators
because they take two expressions as operands.

4

Practice with Relational
Expressions

var a = 1, b = 2, c = 3 ;

Expression true/false Expression true/false

a < c a + b >= c

b <= c a + b == c

c <= a a != b

a > b a + b != c

b >= c

5

Arithmetic Expressions: True
or False

� Arithmetic expressions evaluate to numeric
values.

� An arithmetic expression that has a value of
zero is false.

� An arithmetic expression that has a value
other than zero is true.

6

Practice with Arithmetic
Expressions

var a = 1, b = 2, c = 3 ;

var x = 3.33, y = 6.66 ;

Expression Numeric Value True/False

a + b

b - 2 * a

c - b - a

c - a

y - x

y - 2 * x

7

Review: Structured
Programming

� All programs can be written in terms of only
three control structures

� The sequence structure

� Unless otherwise directed, the statements are

executed in the order in which they are written.

� The selection structure

� Used to choose among alternative courses of action.

� The repetition structure

� Allows an action to be repeated while some condition
remains true.

8

Selection: the if statement

if(condition)

{

statement(s) // body of if statement

}

� The braces are not required if the body contains only
a single statement. However, they are a good idea

and are required by the 104 C Coding Standards.

9

Examples

if(age >= 18)

{

alert("Go Vote!");

}

if(value == 0)

{

alert("You entered zero.");

}
10

Alert Screenshot

<script type="text/javascript">

<!--

var age = 18;

if(age >= 18)

{

alert("Go Vote!");

}

//-->

</script>

11

Good Programming Practice

� Always place braces around the body of an if
statement.

� Advantages:

� Easier to read

� Will not forget to add the braces if you go back

and add a second statement to the body

� Less likely to make a semantic error

� Indent the body of the if statement 2 to 3
spaces -- be consistent!

12

Selection: the if-else
statement

if(condition)

{

statement(s) /* the if clause */

}

else

{

statement(s) /* the else clause */

}

� Note that there is no condition for the else.

13

Example

if(age >= 18)

{

alert("Go Vote!");

}

else

{

alert("Maybe next time!");

}

14

Another Example

if(value == 0)

{

alert("You entered zero.");

}

else

{

alert("Value = " + value);

}

15

Good Programming Practice

� Always place braces around the bodies of the
if and else clauses of an if-else statement.

� Advantages:

� Easier to read

� Will not forget to add the braces if you go back

and add a second statement to the clause

� Less likely to make a semantic error

� Indent the bodies of the if and else clauses 2
to 3 spaces -- be consistent!

16

Nesting of if-else Statements

if(condition1)

{

statement(s)

}

else if(condition2)

{

statement(s)

}

. . . /* more else if clauses may be here */

else

{

statement(s) /* the default case */

}

17

Another Example

if(value == 0)

{

alert("You entered zero.");

}

else if(value < 0)

{

alert(value + " is negative.");

}

else

{

alert(value + " is positive.");

}
18

Gotcha! = versus ==

var a = 2;

if(a = 1) /* semantic (logic) error! */

{

alert("a is one");

}

else if(a == 2)

{

alert("a is two");

}

else

{

alert("a is " + a);

}

19

Gotcha! = versus ==

� The statement if (a = 1) is syntactically correct,
so no error message will be produced. However, a
semantic (logic) error will occur.

� An assignment expression has a value -- the value
being assigned. In this case the value being assigned
is 1, which is true.

� If the value being assigned was 0, then the expression
would evaluate to 0, which is false.

� This is a VERY common error. So, if your if-else
structure always executes the same, look for this
typographical error.

20

Multiple Selection with if

if (day == 0) {

alert ("Sunday") ;

}

if (day == 1) {

alert ("Monday") ;

}

if (day == 2) {

alert ("Tuesday") ;

}

if (day == 3) {

alert ("Wednesday") ;

}

(continued)

if (day == 4) {
alert ("Thursday") ;

}
if (day == 5) {

alert ("Friday") ;
}
if (day == 6) {

alert ("Saturday") ;
}
if ((day < 0) || (day > 6)) {

alert("Error - invalid day.") ;
}

21

Multiple Selection with if-else
if (day == 0) {

alert ("Sunday") ;
} else if (day == 1) {

alert ("Monday") ;
} else if (day == 2) {

alert ("Tuesday") ;
} else if (day == 3) {

alert ("Wednesday") ;
} else if (day == 4) {

alert ("Thursday") ;
} else if (day == 5) {

alert ("Friday") ;
} else if (day == 6) {

alert ("Saturday") ;
} else {

alert ("Error - invalid day.") ;
}

This if-else structure is more
efficient than the corresponding
if structure. Why?

22

The switch Multiple-Selection
Structure

switch (expression)

{

case value1 :

statement(s)

break ;

case value2 :

statement(s)

break ;

. . .

default: :

statement(s)

break ;

}

23

switch Example
switch (day)
{

case 0: alert ("Sunday") ;
break ;

case 1: alert ("Monday") ;
break ;

case 2: alert ("Tuesday") ;
break ;

case 3: alert ("Wednesday") ;
break ;

case 4: alert ("Thursday") ;
break ;

case 5: alert ("Friday") ;
break ;

case 6: alert ("Saturday") ;
break ;

default: alert ("Error -- invalid day.") ;
break ;

}

Is this structure more
efficient than the
equivalent nested if-else
structure?

24

switch Statement Details

� The last statement of each case in the switch
should almost always be a break.

� The break causes program control to jump to
the closing brace of the switch structure.

� Without the break, the code flows into the
next case. This is almost never what you
want.

� A switch statement will work without a default
case, but always consider using one.

25

Good Programming Practices

� Include a default case to catch invalid data.

� Inform the user of the type of error that has
occurred (e.g., "Error - invalid day.").

� If appropriate, display the invalid value.

� If appropriate, terminate program execution
(discussed in CMSC 201).

26

Why Use a switch Statement?

� A switch statement can be more efficient than
an if-else.

� A switch statement may also be easier to
read.

� Also, it is easier to add new cases to a switch
statement than to a nested if-else structure.

27

Logical Operators

� So far we have seen only simple conditions.
if (count > 10) . . .

� Sometimes we need to test multiple conditions in order to make a
decision.

� Logical operators are used for combining simple conditions to
make complex conditions.

&& is AND if (x > 5 && y < 6)

|| is OR if (z == 0 || x > 10)

! is NOT if (!(bob > 42))

28

Example Use of &&

if(age < 1 && gender == "f")

{

alert ("You have a baby girl!");

}

29

Truth Table for &&

Expression1 Expression2 Expression1 && Expression2

0 0 0

0 nonzero 0

nonzero 0 0

nonzero nonzero 1

Exp1 && Exp2 && … && Expn will evaluate to 1 (true)
only if ALL subconditions are true.

30

Example Use of ||

if(grade == "D" || grade == "F")

{

alert ("See you next semester!");

}

31

Truth Table for ||

Expression1 Expression2 Expression1 || Expression2

0 0 0

0 nonzero 1

nonzero 0 1

nonzero nonzero 1

Exp1 && Exp2 && … && Expn will evaluate to 1
(true) if only ONE subcondition is true.

32

Example Use of !

if(!(age >= 18)) /*same as (age < 18)*/

{

alert("Sorry, you can’t vote.");

}

else

{

alert("You can vote.");

}

33

Truth Table for !

Expression ! Expression

0 1

nonzero 0

34

Operator Precedence and
Associativity

Precedence Associativity

() left to right/inside-out

* / % left to right

+ (addition) - (subtraction) left to right

< <= > >= left to right

== != left to right

&& left to right

|| left to right

= right to left

35

Some Practice Expressions

var a = 1, b = 0, c = 7;

Expression True/False

a

b
a + b

a && b

a || b
!c

!!c

a && !b

a < b && b < c
a > b && b < c

a >= b || b > c
36

More Practice

� Given

var a = 3, b = 7, c = 21 ;

evaluate each expression as true or false.

1. c / b == 2

2. c % b <= a % b

3. b + c / a != c - a

4. (b < c) && (c == 7)

5. (c + 1 - b == 0) || (b = 5)

