Machine Architecture and Number Systems

Topics

- Major Computer Components
- Bits, Bytes, and Words
- The Decimal Number System
- The Binary Number System
- Converting from Binary to Decimal
- · Converting from Decimal to Binary
- The Hexadecimal Number System

Major Computer Components

- Central Processing Unit (CPU)
- Bus
- Main Memory (RAM)
- Secondary Storage Media
- I / O Devices

The CPU

- Central Processing Unit
- The "brain" of the computer
- Controls all other computer functions
- In PCs (personal computers) also called the microprocessor or simply processor.

The Bus

- Computer components are connected by a bus.
- A bus is a group of parallel wires that carry control signals and data between components.

• We could also say that the bit is reset or cleared.

6

2

Main Memory (cont.)

- Memory is divided into cells, where each cell contains 8 bits (a 1 or a 0). Eight bits is called a byte.
- Each of these cells is uniquely numbered.
- The number associated with a cell is known as its **address**.
- Main memory is **volatile** storage. That is, if power is lost, the information in main memory is lost.

.

Main Memory (cont.)

- Other computer components can
 get the information held at a particular address in
 - memory, known as a READ,
 or store information at a particular address in memory, known as a WRITE.
- Writing to a memory location alters its contents.
- Reading from a memory location does not alter its contents.

Main Memory (cont.)

- All addresses in memory can be accessed in the same amount of time.
- We do not have to start at address 0 and read everything until we get to the address we really want (sequential access).
- We can go directly to the address we want and access the data (direct or random access).
- That is why we call main memory RAM (Random Access Memory).

Secondary Storage Media

- · Disks -- floppy, hard, removable (random access)
- Tapes (sequential access)
- CDs (random access)
- DVDs (random access)
- Secondary storage media store files that contain
 computer programs
 - data
 - other types of information
- This type of storage is called persistent (permanent) storage because it is non-volatile.

I/O (Input/Output) Devices

- Information input and output is handled by I/O (input/output) devices.
- More generally, these devices are known as peripheral devices.
- Examples:
 - monitor
 - keyboard
 - mouse
 disk driv
 - disk drive (floppy, hard, removable) CD or DVD drive
 - CD or DV
 printer
 - printer
 scanner
 - oounnoi

Bits, Bytes, and Words A bit is a single binary digit (a 1 or 0). A byte is 8 bits A word is 32 bits or 4 bytes Long word = 8 bytes = 64 bits Quad word = 16 bytes = 128 bits Programming languages use these standard number of bits when organizing data storage and access.

• What do you call 4 bits? (hint: it is a small byte)

Number Systems

- The on and off states of the capacitors in RAM can be thought of as the values 1 and 0, respectively.
- Therefore, thinking about how information is stored in RAM requires knowledge of the binary (base 2) number system.
- Let's review the decimal (base 10) number system first.

13

15

The Decimal Number System

• The decimal number system is a positional number system.

Example:

$5 6 2 1$ $1 X 10^{\circ} = 1$	
$10^{3} 10^{2} 10^{1} 10^{0}$ $2 \times 10^{1} = 20$	
$6 \times 10^2 = 600$	
$5 \times 10^3 = 5000$	
	14

The Decimal Number System

- The decimal number system is also known as base 10. The values of the positions are calculated by taking 10 to some power.
- Why is the base 10 for decimal numbers?Because we use 10 digits, the digits 0 through 9.

The Binary Number System

- The binary number system is also known as base 2. The values of the positions are calculated by taking 2 to some power.
- Why is the base 2 for binary numbers?Because we use 2 digits, the digits 0 and 1.

Converting fro	om Binary	y to Decimal	
<u>10011</u>	<u>0 1</u>	$1 X 2^0 = 1$	
2 ⁶ 2 ⁵ 2 ⁴ 2 ³ 2 ²	21 20	$0 X 2^{1} = 0$	
		$1 X 2^2 = 4$	
$2^{\circ} = 1$ 2°	4 = 16	1 X 2 ³ = 8	
2 ¹ = 2 2 ⁵	5 = 32	$0 X 2^4 = 0$	
$2^2 = 4$ 2^6	³ = 64	$0 X 2^{5} = 0$	
$2^3 = 8$		1 X 2 ⁶ = <u>64</u>	
		771	0 18

Converting from Bin	ary to Decimal	
Practice conversions:		
Decimal	<u>Binary</u>	
59		
82		
175		
		21

 Because we use 16 symbols, the digits 0 through 9 and the letters A through F.

Th	e Hex	adecimal	Num	ber S	ystem	
Binary	Decimal	Hexadecimal	Binary	Decimal	Hexadecima	<u>1</u>
0	0	0	1010	10	Α	
1	1	1	1011	11	в	
10	2	2	1100	12	С	
11	3	3	1101	13	D	
100	4	4	1110	14	E	
101	5	5	1111	15	F	
110	6	6				
111	7	7				
1000	8	8				
1001	9	9				
						24

- Octal is another number system that is base 8.
- Because 8 is the equivalent of 2³, it is easy to convert from binary to octal and vice-versa.
- Convert the following binary number to octal:
 01 101 001 011 110 000