Machine Architecture and Number Systems

Topics

- Major Computer Components
- Bits, Bytes, and Words
- The Decimal Number System
- The Binary Number System
- Converting from Binary to Decimal
- Converting from Decimal to Binary
- The Hexadecimal Number System

Schematic Diagram of a Computer

The Bus

- Computer components are connected by a bus.
- A bus is a group of parallel wires that carry control signals and data between components.

Major Computer Components

- Central Processing Unit (CPU)
- Bus
- Main Memory (RAM)
- Secondary Storage Media
- I/ O Devices

The CPU

- Central Processing Unit
- The "brain" of the computer
- Controls all other computer functions
- In PCs (personal computers) also called the microprocessor or simply processor.

Main Memory

- Main memory holds information such as computer programs, numeric data, or documents created by a word processor.
- Main memory is made up of capacitors.

If a capacitor is charged, then its state is said to be 1, or ON.

- We could also say the bit is set.
- If a capacitor does not have a charge, then its state is said to be 0, or OFF
- We could also say that the bit is reset or cleared.

Main Memory (cont.)

- Memory is divided into cells, where each cell contains 8 bits (a 1 or a 0). Eight bits is called a byte.
- Each of these cells is uniquely numbered.
- The number associated with a cell is known as its address.
- Main memory is volatile storage. That is, if power is lost, the information in main memory is lost.

Main Memory (cont.)

- All addresses in memory can be accessed in the same amount of time.
- We do not have to start at address 0 and read everything until we get to the address we really want (sequential access).
- We can go directly to the address we want and access the data (direct or random access).
- That is why we call main memory RAM (Random Access Memory).

I/O (Input/Output) Devices

- Information input and output is handled by I/O (input/output) devices.
- More generally, these devices are known as peripheral devices.
- Examples:
- monitor
- keyboard
- mouse
- disk drive (floppy, hard, removable)

CD or DVD drive

- printer
- scanner

Main Memory (cont.)

- Other computer components can
- get the information held at a particular address in memory, known as a READ,
- or store information at a particular address in memory, known as a WRITE.
- Writing to a memory location alters its contents.
- Reading from a memory location does not alter its contents.

Secondary Storage Media

- Disks -- floppy, hard, removable (random access)
- Tapes (sequential access)
- CDs (random access)
- DVDs (random access)
- Secondary storage media store files that contain
- computer programs
- data
- other types of information
- This type of storage is called persistent (permanent) storage because it is non-volatile.

Bits, Bytes, and Words

- A bit is a single binary digit (a 1 or 0).
- A byte is 8 bits
- A word is 32 bits or 4 bytes
- Long word $=8$ bytes $=64$ bits
- Quad word = 16 bytes = 128 bits
- Programming languages use these standard number of bits when organizing data storage and access.
- What do you call 4 bits? (hint: it is a small byte)

Number Systems

- The on and off states of the capacitors in RAM can be thought of as the values 1 and 0 , respectively.
- Therefore, thinking about how information is stored in RAM requires knowledge of the binary (base 2) number system.
- Let's review the decimal (base 10) number system first.

The Decimal Number System

- The decimal number system is also known as base 10. The values of the positions are calculated by taking 10 to some power.
- Why is the base 10 for decimal numbers?
- Because we use 10 digits, the digits 0 through 9 .

The Binary Number System

- The binary number system is also a positional numbering system.
- Instead of using ten digits, 0-9, the binary system uses only two digits, 0 and 1.
- Example of a binary number and the values of the positions:

$$
\begin{array}{lllllll}
\frac{1}{2^{6}} & \underline{0} & \underline{0} & \frac{1}{2^{5}} & \frac{1}{2^{4}} & \underline{0} & \frac{1}{2^{3}} \\
2^{2} & 2^{1} & 2^{0}
\end{array}
$$

The Decimal Number System

- The decimal number system is a positional number system.
- Example:

$$
\begin{array}{clr}
5621 & 1 \times 10^{0}= & 1 \\
10^{3} 10^{2} 10^{1} 10^{\circ} & 2 \times 10^{1}= & 20 \\
& 6 \times 10^{2}=600 \\
& 5 \times 10^{3}=5000
\end{array}
$$

The Binary Number System

- The binary number system is also known as base 2. The values of the positions are calculated by taking 2 to some power.
- Why is the base 2 for binary numbers?
- Because we use 2 digits, the digits 0 and 1 .

Converting from Binary to Decimal

$\frac{1}{0}$ $\underline{0}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	$1 \times 2^{0}=1$	
$2^{6} 2^{5}$	$2^{4} 2^{3}$	$2^{2} 2^{1}$
2^{0}		$1 \times 2^{1}=0$
$2^{0}=1$	$2^{4}=16$	$1 \times 2^{3}=8$
$2^{1}=2$	$2^{5}=32$	$0 \times 2^{4}=0$
$2^{2}=4$	$2^{6}=64$	$0 \times 2^{5}=0$
$2^{3}=8$		$1 \times 2^{6}=\frac{64}{77_{10}}$

Converting from Binary to Decimal		
Practice conversions:		
Binary	Decimal	
11101		
1010101		
100111		
		19

Converting from Binary to Decimal	\#:\%.
Practice conversions:	
Decimal Binary	
59	
82	
175	
	${ }^{21}$

Converting from Decimal to Binary

- Make a list of the binary place values up to the number being converted.
- Perform successive divisions by 2, placing the remainder of 0 or 1 in each of the positions from right to left.
- Continue until the quotient is zero.
- Example: 42_{10}

$$
\begin{array}{rrrrrr}
2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0} \\
32 & 16 & 8 & 4 & 2 & 1 \\
\underline{1} & \underline{0} & \underline{1} & \underline{0} & \underline{1} & \underline{0}
\end{array}
$$

Working with Large Numbers

$$
0101000010100111=?
$$

- Humans can't work well with binary numbers; there are too many digits to deal with.
- Memory addresses and other data can be quite large. Therefore, we sometimes use the hexadecimal number system.

The Hexadecimal Number System

- The hexadecimal number system is also known as base 16. The values of the positions are calculated by taking 16 to some power.
- Why is the base 16 for hexadecimal numbers ?
- Because we use 16 symbols, the digits 0 through 9 and the letters A through F.

Example of Equivalent Numbers

Binary: 101000010100111_{2}

Decimal: $\mathbf{2 0 6 4 7}_{10}$

Hexadecimal: $50 \mathrm{~A} 7_{16}$

Notice how the number of digits gets smaller as the base increases.

Converting from Binary to Hex

- Because 16 is the equivalent of 2^{4}, it is easy to convert from binary to hex and vice-versa.
- Binary: 1101001011110000
- Hex:0x D 2 F 0

Converting from Binary to Octal

- Octal is another number system that is base 8.
- Because 8 is the equivalent of 2^{3}, it is easy to convert from binary to octal and vice-versa.
- Convert the following binary number to octal: -01 $101001011 \quad 110000$

