CMSC 100 – Fall 2012
Programming Assignments #2 and #3 (Scratch Project)
Handed out Tuesday, 9/18/12
Due Tuesday, 10/16/12 (PA #2), and Monday, November 5 / Tuesday, November 6 (PA #3—Scratch Project)

Notes:

· For PA #2, you should submit your Scratch program (the “.sb” file) vis Blackboard by class time on the due date (Tuesday, October 16).

· For the Scratch project, should submit your Scratch program (the “.sb” file) via Blackboard, by Monday, November 5 at midnight. You will be sharing your programs during “Movie Day” on November 6, the due date, and we need to use that morning to load the programs on one of our laptops so they can all be shown.
· For PA #3, you should also submit a written description of (1) what your program does (i.e., what we should see when we run it), (2) any instructions for running it (i.e., what we should click on or type in to make it work), and (3) how the program satisfies the requirements listed in the assignment below (i.e., what are the sprites, conditionals, loops, etc.). Please make this last part (program requirements) very explicit (e.g., one bullet per requirement, such as “Sprites: My world includes a turtle, a spaceship, and a chair”). This description should be submitted as a hardcopy in class, also no later than class time on the due date (Tuesday, November 6).

· Your grade will be based on whether you satisfy the requirements listed below, whether your program works “as advertised” in the description you submit, and the effort you appear to have put into the design of the program (creativity, trying out different Scratch concepts, etc.) . Please note that in some cases, your program may not run exactly the same way on our machines as it does on yours, so the description document is very important for us to know how your program was intended to work.

· Please feel free to send Dr. dJ or the TAs email or talk to us during office hours if you get stuck or want some help figuring out how to design and implement your program. You can use Piazza to ask any general Scratch programming questions that you may have (“does anybody know how to...”), but you should not ask extremely specific questions, nor should you post your code.
· You have several weeks for each assignment, but please don’t put them off until the last minute. Leave yourself some time to experiment and familiarize yourself with the Scratch interface. These assignments are not “cookbook” step-by-step programs like PA #1 was – they require some problem solving, design, and testing, and they will probably take some trial and error over seeral sessions to get them working correctly.
Programming Assignment #2: Maze World

In this assignment, you will be constructing a maze world and a sprite that you can move through the maze using arrow controls. Following the steps in the order given here, and testing each step thoroughly before moving on, will make your task much easier!
1. Start by reading the help sections on sensing, operators, and variables.

2. Create an new Scratch project, and delete the default cat sprite.

3. Draw a maze on your stage background (click on Stage in the Sprites pane, then click on the Backgrounds tab and click on Edit). You should use a single color to draw all of the walls (this will be important later in the program). Alternatively, you can use a drawing program to save an image of your background and import it into Scratch (using the Import button in the Backgrounds tab). Note: your maze doesn’t have to be sophisticated or complex, so don’t spend a lot of time making the most crazy maze you can imagine. So long as there are walls, that’s good enough!

4. Create a sprite to represent your protagonist. You can import an image from the Scratch library (or elsewhere) or draw one yourself using the Paint tool. Make sure the sprite is small enough that it will be able to navigate through your maze without touching the walls.

5. Set up a reset script that places your protagonist at the starting point of your maze (which can be anywhere you want) when the green flag is pressed.

6. Set up four control blocks that start with “when (right/left/up/down) arrow key pressed.”

7. To each of these blocks, you should attach a code block that makes your protagonist move in the appropriate direction by a small amount. Note: You should use the commands “change x by __” and “change y by __”

8. Now you need to make the movement code blocks more sophisticated. Specifically, you don’t want your protagonist to be able to move through walls (which would defeat the purpose of having a maze!). To do this, you need to add conditional logic that only permits the protagonist to move in the designated direction if it is not next to a wall (or the edge) in that direction. The easiest way to do this is to move the sprite in the direction requested, test whether it is touching a wall or the edge, and if so, move the sprite the same distance in the opposite direction. You will need to use an “if” block with an “or” operator. For the first condition (touching the wall), since your walls are all the same color, you can make use of the “touching color” item (found in the Sensing panel) and select the color of your wall. (When you click on the color square in the “touching color” statement, you’ll see a little eyedropper, and you can click on one of your walls to select that color.) This value will be true if your sprite is touching the specified color and false otherwise. For the other condition, you’ll want to use the appropriate Sensing command to sense whether the sprite is touching the edge of the stage.

9. Add a new sprite that represents your maze goal and place it somewhere in the maze.

10. Add logic that tests whether the protagonist is touching the goal sprite. You should use a conditional and a “touching ___” value to test whether the protagonist and goal sprites are touching. You could potentially put this conditional in either sprite’s script section; each way requires a slightly different test. When the protagonist it touching the goal sprite, you should have it say a victory message, such as “I win!” (This logic will need to appear in each of the four control blocks (up, down, left right).)

11. Add a completion condition, such that once the protagonist is touching the goal, it can no longer move in any direction until the reset script is activated (i.e., the green flag is pressed). To do this, you will need to create a variable that is accesible by all sprites. You may want to call it something like “GameOver” and initialize it to 0 (false). Once the protagonist reaches the goal sprite, you should change the value of the variable to true (1). In your movement code blocks, you should then only allow movement when the variable is false (0), using an appropriate conditional. Remember to also add to your reset code block a statement that sets the game over value to false (0).

12. Add an obstacle sprite. This sprite is just like the goal sprite except that if the protagonist touches it, then the protagonist loses and the game ends (using GameOver to prevent movement until the reset script is activated). The agent should display an appropriate defeat message when this happens. (Hint #1: the logic for this should be in the protagonist sprite program, not the obstacle program, because the obstacle is just sitting there and doesn’t have any events to trigger any behavior. Hint #2: this logic is almost exactly like the logic for the goal condition, so you may want to duplicate and edit that block. Be sure you place it in the right place so that it will be tested!)

13. Extra credit (up to 10 points): Add a bonus sprite and a scoring mechanism. A bonus sprite is a sprite that the agent gets points for collecting. You can place it anywhere in the maze. When the agent touches this bonus sprite, the sprite should disappear from view. You can use the “hide” statement in the Looks panel to do this. Make sure that when the reset script is activated, the bonus sprite reappears! Finally, you’ll need to create a score variable that is increased for collecting the bonus sprite. When the game starts, the score should hold a value of zero; each time a bonus sprite is collected, the score should be increased. Note: You need to make sure that the protagonist cannot collect extra points once a bonus sprite disappears. Therefore, you may want to make a new variable and add a conditional that increases the score value only when the bonus sprite hasn’t been collected. Your approach to doing this should be similar to how you prevent movement once the game is over.

Tips:

· You can hide and show variable values by checking them in the variables tab, or by right clicking on them on the stage if they’re visible. If you do the extra credit step, you should always have the score variable checked so that you can see it. The others you can uncheck or check for testing purposes.

· You can see a demo video of a correctly implemented maze world by following the link on the course schedule. (Note: the protagonist in the demo movie has animated motion (flapping wings, by cycling through costumes) – you can do this if you want to try it out, but it’s not required!)

· It might be worthwhile to break your code up into broadcasted procedures. (For example, after moving, you could send a “TestGoal” message and have a single block that tests that goal condition, instead of having the test behavior in each of the four arrow blocks.) This is entirely optional, though.

Programming Assignment #3

Design your own Scratch world from scratch (no pun intended). This can be some kind of interactive cartoon, a game, or any other interactive program of your choice. The only requirements are as follows:
· At least five sprites must be used.

· In at least one place, a broadcast message must be used to initiate behavior in a different sprite.

· There must be at least one conditional (“if” statement).

· There must be at least one way for the user to provide input (via keyboard hits, mouse clicking, inputting text, etc.) that affects the program.

· At least one variable must be used that causes different things to happen based on the value of variable; also, the variable must change while the program is running (either through user input or by some other means).

· At least one loop must be used.

· At least two sounds must be included.
Tips:

· Did you know you can have multiple stage backgrounds that can be change programmatically? You might want to consider changing the background as part of your program.

Extra Credit (up to 10 points):

· Utilize a list in a dynamic way (meaning that the list changes throughout the course of the program in a relevant way). In a game, for example, you could have a score board. See the help screen on Variables for more information about lists.
