
1

Five Key Problems
in Computer Graphics

Penny Rheingans
UMBC

Computer Graphics
• Using computer to generate simulated scenes or

worlds
• Requires tricking eye to believe 2D collection of

pixels is really a continuous 3D world
• Coding-intensive application with strong basis in

creativity and human perception



2

Five Key Problems
• What do you see?
• What does it look like?
• What shape is it?
• How does it move?
• Why does it have to look like a photograph?

What shape is it?



3

Modeling Approaches
• Modeling problem

– Define shape, color, and other visual properties
• Modeling solutions

– Manual primitive creation
– Scans from physical object
– Functional descriptions
– Grammar-based generation
– Biologically-inspired simulations

Scanning



4

Functional Descriptions
• Define visual

attributes with
function, defined
over space
– Shape
– Density
– Color

Grammar-based Generation
• Use (mostly) context-free grammars (CFG) to

specify structural change over generations
• A CFG G=(V,T,S,P) where

– V is a set of non-terminals
– T is a set of terminals
– S is the start symbol
– P is a set of productions (rules) of the form:

• A→x, where A ∈ V, x  ∈ (V ∪ T)*



5

Applying Grammar Rules
Rules
• B → A[B]AA[B]
• A  → AA

• Branches to left

Strings
1: B
2: A[B]AA[B]
3: AA[A[BAA[B]]AAAA[A[B]AA[B]]

Applying Grammar Rules
• N = 7, a = 25.7°

• S = X
• Rules:

X→ F[+X][-X]FX
F → FF



6

Biological
Simulations

Mimic developmental
process:
– cellular automata
–  reaction diffusion



7

What do you see?

Visibility Approaches
• Visibility problem

– Determine which objects (or parts of objects) are
closest and therefore visible (a sorting problem)

• (Some) visibility solutions
– Painter’s algorithm
– Zbuffer
– Scanline
– Ray tracing



8

Painter’s Algorithm
• Basic approach

– Draw polygons, from farthest to closest

• First polygon:
– (6,3,10),  (11, 5,10), (2,2,10)

• Second polygon:
– (1,2,8), (12,2,8), (12,6,8), (1,6,8)

• Third polygon:
– (6,5,5), (14,5,5), (14,10,5),( 6,10,5)

Painter’s Algorithm
• Given

List of polygons {P1, P2, …. Pn)
An array of Intensity [x,y]

• Begin
Sort polygon list on minimum Z (largest z
value comes first in sorted list)

For each polygon P in selected list do
For each pixel (x,y) that intersects P do

Intensity[x,y] = intensity of P at (x,y)
Display Intensity array



9

Painter’s Algorithm: Cycles
• Which to scan first?

• Split along line, then scan 1,2,3,4 (or split another polygon and
scan accordingly)

• Moral: Painter’s algorithm is fast and easy, except for
detecting and splitting cycles and other ambiguities

Z-Buffer
• Basic approach

– Draw polygons, remembering depth of
stuff drawn so far

• First polygon
(1, 1, 5), (7, 7, 5), (1, 7, 5)

• Second polygon
(3, 5, 9), (10, 5, 9), (10, 9, 9), (3, 9, 9)

• Third polygon
(2, 6, 3), (2, 3, 8), (7, 3, 3)



10

Z-Buffer Algorithm
• Given

List of polygons {P1, P2, …., Pn}
An array x-buffer[x,y] initialized to +infinity
An array Intensity[x,y]

• Begin
For each polygon P in selected list do

For each pixel (x,y) that intersects P do
Calculate z-depth of P at (x,y)
If z-depth < z-buffer[x,y] then

Intensity[x,y] = intensity of P at (x,y)
Z-buffer[x,y] = z-depth

Display Intensity array

Scanline Algorithm
• Basic approach

– Simply problem by considering only one scanline at a
time (3D problem -> 2D)



11

Scanline Algorithm
• Consider xz slice

• Calculate where visibility can
change

• Decide visibility in each span

Scanline Algorithm
1. Sort pgons into sorted surface table (SST) on Y
2. Initialize y and active surface table (AST)

Y = first nonempty scanline
AST = SST[y]

3. Repeat until AST and SST are empty
Identify spans for this scanline (sorted on x)
For each span

determine visible element (based on z)
fill pixel intensities with values from pgon

Update AST
remove exhausted polygons
y++
update x intercepts
resort AST on x
add entering polygons

4. Display Intensity array



12

Raytracing
• Basic approach

– Cast ray from
viewpoint through
pixels into scene

Raytracing Algorithm
Given
    List of polygons { P1, P2, ..., Pn }
    An array of intensity [ x, y ]
{

For each pixel (x, y) {
form a ray R in object space through the
camera position C and the pixel (x, y)

Intensity [ x, y ] = trace ( R )
}

Display array Intensity
}



13

Raytracing Algorithm
intensity Function  trace ( Ray )
{

for each polygon P in the scene
calculate the intersection of P and the ray R

if ( The ray R hits no polygon )
        return ( background intensity )

else {
find the polygon P with the closest
intersection

calculate intensity I at intersection point
return ( Illuminate( I, trace(reflect ),
trace( refract ) ) )

    }
}

What does it look like?



14

Illumination Approaches
• Illumination problem

– Model how objects interact with light
• Modeling solutions

– Simple physics/optics
– More realistic physics

• Surface physics
• Surface microstructure
• Subsurface scattering
• Shadows
• Light transport

Simple Optics: Diffuse Reflection
Lambert’s Law:

the radiant energy from any small surface
area dA in any direction θ relative to the
surface normal is proportional to cos θ

Idiff = kdIlcos θ
      = kdIl (N•L)



15

Simple Optics: Specular Reflection
For specific wavelength λ

Ispecλ = ksλIλcosnφ

            = ksλIλ(R•V)n

Hacky approximation for shinyness

Simple Optics:
Refraction



16

Surface Physics
• Conductor (like metal)

• Dielectric (like glass)

• Composite (like plastic)

Surface
Microstructure

Stam ‘99



17

Subsurface
Scattering

          Jensen et al, ‘01

Shadows

Laine et al., SIGGRAPH ‘05



18

Light Transport

How does it move?



19

Motion Dynamics Approaches
• Motion dynamics problem

– Define geometric movements and deformations of
objections under motion

• Dynamics solutions
– Simulate physics of simple objects
– Model structure and constraints
– Capture motion from reality
– Simulate group dynamics
– Use your imagination

Simulate Physics



20

Graphics for Training

Model Structure



21

Motion Capture

Behavioral Simulation



22

Use Your Imagination
John
Lasseter

Play

Squash and Stretch
• Defining the rigidity and mass of an object by

distorting its shape during an action
• Keys

– Volume constant
– Different materials respond differently



23

Anticipation
• The preparation for an action
• Ex:

– Pull back foot to kick ball
– Luxo: big lamp looks off stage before Jr.’s entrance

• Keys
– Direct attention to upcoming action
– Anticipation can allow faster action



24

Secondary Action
• Action that results directly from another action
• Ex:

– Luxo: cord movement
– Facial expression

• Keys
– Needs to be subordinate to primary action

Appeal
• Design or action that the audience enjoys watching
• Ex:

– Jr scaled like child

• Keys
– Personality of characters (batting motions of two lamps)
– Identify and express emotional state (Luxo hops)


