CMSC 100 – Midterm Study Guide
Midterm date: Tuesday, October 20, 2009
General Notes

· You may bring one page of notes to the exam. You will also need a pencil. You will not need anything else (calculator, scrap paper, etc.).

· Answers will be written on the exam itself. You will each receive a blue book that you may use for scrap paper. The blue book must be returned with the exam.

· Be on time on test day! No extra time will be given at the end of class for late arrivals.

· The exam will cover all material covered in class (lectures and lecture slides), plus the assigned readings. The summary below is a guide to the main topics that are likely to appear on the exam, and some notes about what will not be covered on the exam. In general, boldface concepts in the text are important to recognize.

Class 1-3: Overview, Google, Computer Deconstruction

· Main themes of the course: Abstraction, complexity and exponential growth, “it’s all just bits.”

· Basic methods that Google uses to crawl, index, store, and search the Web.

· PageRank idea and other search criteria.

· Names and contributions of important people in computer science in general, and Google in particular.

· Not details of Google’s history (dates, etc.)

· Main components of a computer

Class 4-5: Bits, Boolean Algebra, Huffman Codes

· Binary number representations (ordinary unsigned binary numbers, hexadecimal, ASCCI representation, bytes, powers of 2 (extra credit: 2’s complement)).

· How to construct, encode, and decode a Huffman encoded message.

· Basic Boolean algebra ((, (, ((extra credit: DeMorgan’s Law).

· Truth tables – reading and constructing.

· Mass storage – seek/latency/access time, transfer rate.

· Types of data compression methods.

· Not floating point numbers, excess notation, how a flip-flop works, memorizing ASCII code values, memorizing specific compression models (GIF, JPEG, MPEG…)

Class 8: Alice

· The Alice programming language will not be on the exam. (However, the material about algorithms that we went over on those dates is fair game.)

Class 6, 7, 9: Algorithms and Computer Organization

· Interpreting and writing simple pseudocode algorithms, including variables, lists, conditions (if.. then.. else), loops (while, repeat, for), logical tests.

· Parameters vs. local variables.

· Binary search and insertion sort.

· Basic elements of a computer (CPU, registers, main memory, external devices, memory bus, etc.)

· Fetch-Decode-Execute control loop.

· RISC vs. CISC architectures (know what they are).

· Not material in Chapter 2 that wasn’t on the lecture slides.

Class 10: Algorithmic Efficiency

· Be able to characterize the running time of an algorithm into the complexity classes discussed in class.

· Understand the difference between inherent complexity of a problem vs. actual complexity of a solution (algorithm).

· Worst case / best case / average case analysis.

· Not big-theta notation, software verification (proofs of correctness).

Class 11: Operating systems

· Know what the operating system’s main functions are.

· Understand the difference between the kernel, shell, system utilities, and application programs.

· Understand the distinction between a program and a process.

· Know how the different scheduling algorithms work (queuing models—LIFO, FIFO, priority-based, and combinations of these), and be able to simulate their behavior on a given set of jobs.

· Understand and recognize deadlock conditions.

· Batch vs. multiprocessing – why and how these different approaches are used.

· Virtual memory, memory management, paging, file allocation and fragmentation.

· Bootstrapping process.

· Not details of how semaphores and critical regions prevent deadlock, operating systems security issues and management schemes.

Class 12: Networks

· Types of networks, but vs. star topology, connection hardware (e.g., routers).

· Know what a protocol is and why it is necessary.

· Client-server vs. peer-to-peer models.

· Internet, ISP, IP addresses, DNS, WWW vs. Internet, HTTP and URL standards.

· 4-layer network model, packets, the basic concept of TCP/IP.

· Basic idea of HTML and markup tags.

· Not collision detection/avoidance, XML, memorizing protocol names and details (e.g., specific network or email protocols).

