
The first thing we should do is take a look at the malware in Detect it Easy: 

 

Right off the bat, we can tell that this is most probably packed, since DiE has detected that the 

PECompact packer is likely being used. On top of this automatic detection, there’s a few other key 

indicators that suggest packing: 

 

A rather large section of the executable has a very high entropy – almost 8! This suggests that this 

section is packed. Since most packers pack the code of an executable, we should suspect that a large 

section with an extremely high entropy contains the packed code. There are other indicators as well: 



 

Note that there are very few imports for this executable, which means that the executable will need to 

dynamically load and link various DLLs during runtime if it wants to do anything particularly interesting. 

In fact, of the few functions that are actually important on load, we see LoadLibraryA and 

GetProcAddress – these allow the program to do that kind of dynamic loading and linking. This also 

strongly suggests packing. 

Attempting to disassemble (or decompile) this executable yields less than desirable results: 

 



IDA very quickly runs into bytes that it can’t interpret as assembly code and its analysis fails. Even worse, 

there doesn’t appear to be any obvious tail jump instruction, even if we check the call to the function 

405141: 

 

If we assume that this malware is actually functional, then we can pretty safely assume that a tail jump 

will eventually exist when the unpacking stub finishes execution: the program’s code is probably going 

to be dynamically modified while its still loaded to insert a jump instruction (among other things) into it. 

Since this isn’t really something that we can discover via static analysis, we shift gears to a more 

dynamic method: 

 



Loading the program in immunity debugger show us mostly the same things we saw when we opened it 

with IDA: a small jump, a pusha, a pushf, and a function call. The pusha and pushf instructions (which 

push all registers and flags onto the stack respectively) specifically give us a hint as to something the 

malware will do after it is unpacked (and give us the means to unpack it and analyze it), but to 

understand why, we need to review how the stack works. The stack is a data structure that exists in a 

process’s memory and grows “downwards” (towards higher memory addresses) as more data put onto 

the stack. Data is removed from the stack in a “bottom up” fashion, where data that was written to the 

stack more recently is read and removed first. The CPU keeps track of where we are in the stack using a 

register (listed as ESP on the register view of immunity): 

  

The stack pointer starts at the “top” of the stack – when data is inserted onto the stack, it is placed at 

the location denoted by ESP (which is then incremented to move on to the next free memory location). 

When data is read and removed from the stack, we look at the data  

 

  



One of the first things the malware does is execute the instructions pusha and pushf (displayed as 

pushad and pushfd in immunity – the “d” suffix indicates that it is operating on a DWORD, which is the 

size of an entire 32 bit register). Pusha will push each of the CPU registers onto the stack (in a particular 

order) when it is executed, and pushf does the same with the flags. This suggests that the malware is 

trying to preserve the state of the CPU right when the program starts, probably to restore it later when 

the unpacking (which will certainly modify the registers while executing) is finished and it’s about to 

jump to the newly unpacked code. We can actually exploit this fact using a memory breakpoint. 

Consider what the stack looks like right after pusha executes: it will have all of the CPU registers placed 

onto the stack:  

 

If the malware was truly interested in restoring the processor state right before jumping to the actual 

code, we can pretty safely assume that it will keep these values exactly as they are on the stack until it 

comes time to restore them – probably using an instruction like popa (which restores all registers from 

the stack). This means that the memory locations on the stack that are storing the saved registers aren’t 

going to be accessed (i.e. popped) until that time. A lot is going to happen during the unpacking – 

registers will change values, and things will probably get put onto and removed from the stack, but the 

malware will likely be careful not to pop any of those saved registers during that process in order to 

keep them safe until it runs the popa command. If we could monitor the memory at (for example) the 

location on the stack that is storing the edi register (which is the last register to be pushed by pusha) to 

see when it actually gets popped, we will be able to tell the exact moment where popa is called. We 

can’t just search the disassembled malware code for the popa instruction since we know (from our 

earlier static analysis) that it hasn’t been unpacked yet (meaning it’s obfuscated and unreadable) - we 

won’t see it in the program memory at all until the unpacking finishes. Immunity allows us to set 

memory breakpoints pretty easily – the main challenge is figuring out where in the program memory the 



registers we’re interested in are. Thankfully, this isn’t actually too hard if we’re clever about stepping 

through the program. Consider the above diagram showing the stack immediately after pusha executes: 

the stack pointer (ESP) is pointing at the memory location that is storing edi. If we set a memory access 

breakpoint at that location, then it will likely trigger right after the popa instruction (which will access 

that memory address) gets executed. The best way to do this is to step through the program from the 

beginning until right after we execute pusha:  

 

Note that the ESP register is blue, meaning it was just changed by the last instruction. This makes sense 

since we just pushed a whole bunch of registers onto the stack, so ESP should have decreased by quite a 

few bytes (if you pause right after pushf instead, you’ll see that ESP is all the way back at 00199FF70 – 

we just pushed 32 bytes onto the stack with pusha). The memory location currently pointed to by ESP 

(0019FF50) is the memory location that is currently storing the value of edi on the stack. In fact, if you 

look at the memory viewer at the bottom left, you’ll see that 0019FF50 has the values 30 51 40 00 in 

memory – this is storing the value 00405130, which is exactly what we see in the current edi register. 

This is the memory location we need to monitor. We can tell immunity to do just that by highlighting all 

four of those bytes, right clicking, then going to Breakpoint->Hardware, on access->Dword: 



 

Now immunity will automatically pause execution right after that memory location gets accessed, which 

should only happen when popa gets executed. If we start running the program, we’ll find that it does 

just that: 

 

Popa just executed, and we are now on popf. We suspect that the program has finished its unpacking, 

and is about to execute the tail jump. Although we don’t see a long jump instruction specifically, we do 

see a push followed by a return, which does the same exact thing (return pops a value from a stack then 

jumps to it). In fact, we see that the value being pushed immediately before the return is 401577, which 

is very far away from where the program is currently executing in memory (40754F). This is probably the 

tail jump. Stepping into the jump puts us in a strange place:  



 

We just jumped into what immunity is telling us is part of the program that contains data, not code. It 

would be very strange for the malware to make execution jump to something that isn’t executable 

bytecode (which in most cases will cause a crash), so we suspect that this actually IS code that immunity 

is displaying as data. The reason that immunity is doing this is that when it scans the program when it 

opens, it tries to classify different sections as code, data, etc. If it finds that a section contains data, it 

won’t automatically change its classification if that section gets modified in memory. Instead, we need 

to manually tell it that this is probably code now- this can be done by right clicking on the current 

instruction, going to Analysis, and pressing “Analyse code” (yes, they spelled “Analyze” wrong). 

 

This will make things a bit more readable:  



 

Now we can use OllyDumpEx to dump the unpacked executable and ImpRec to fix the import table, but 

before we do that, we should probably look through some of the unpacked code to see if we can figure 

out some things about it (though we’ll need to make the code view a bit bigger). 

 

Specifically, the calls to GetVersion and GetCommandLineA suggest that this is a command line program. 

If we saw calls to RegisterClassA, LoadIconA, and FindWindowA instead, then we’d probably be dealing 

with a GUI based program. Most analysis at this point should be done on an unpacked binary, so let’s do 

that by going to Plugins->OllyDumpEX->Dump process 



 

OllyDump needs to know the RVA (relative virtual address) of the OEP. The OEP is the Original Entry 

Point of the program, which is where the actual malware itself (rather than the unpacking stub) starts 

executing. Generally, this is the instruction jumped to by the tail jump, which in our case is 00401577. 

The RVA of an address in program memory is just the address minus the base address of the program 

(which we can see in our very first screenshot of DiE). Here, this is 401577-400000=1577. We can either 

manually enter this into the Entry Point field, or if execution is currently paused at the OEP (which it 

should be!), we can press “EIP as OEP”, and OllyDump will calculate it for us. 

 

Now we just press “Dump” and save our dumped executable somewhere. 



 

Currently, the dumped executable will start running from the OEP. While this is what we want, we need 

to make sure that all the libraries and functions that the unpacked malware needs are imported. The 

unpacking stub actually dynamically loaded and linked all the relevant libraries, but the code that does 

this won’t be executed in the dumped executable anymore (since we start at a point of the code that 

normally executes after the unpacking stub finishes). We need to set up an Import Address Table (IAT) 

that loads and links the relevant libraries and functions when the program is loaded. ImpRec lets us do 

just that. First, we need to select the actively running malware process that we’re debugging in the 

“Attach to an Active Process” drop down: 

 



The process should appear as long as it’s open and paused in the debugger. ImpRec will only work if the 

malware is paused at the OEP, so it’s very important to make sure we are able to identify and get to the 

OEP with Immunity. ImpRec also needs the RVA of the OEP entered into the OEP field. For this malware, 

the RVA of the OEP was found to be 1577, so we put that in and press “IAT Autosearch”: 

 

ImpRec uses the OEP to try and locate the malware’s IAT. By pressing “Get Imports”, it adds the libraries 

and functions that were dynamically loaded by the unpacking stub to the IAT so they are loaded 

automatically when the dumped program is executed:  

 



Note that kernel32.dll imports many more functions now than it did in the packed executable. We can 

save this patched executable to a file by pressing “Fix Dump” and selecting the dumped executable: 

 

The file will have the same name as the unpacked executable, but with an underscore at the end. We 

can use this file to perform normal static analysis (such as opening it in DiE, IDA, or Ghidra) on the actual 

unpacked code of the malware. 


