The first thing we should do is take a look at the malware in Detect it Easy:

&
D8 Detect It Easy v3.01

File name

C:/Users/Student/Desktop/Practical Malware Analysis Labs/BinaryCollection/Chapter_18L/Lab18-03.exe

File type
PE32
PE
Sections
0003
Scan

Detect It Easy(DiE)

packer
compiler

linker

Signatures

;; IDA - Lab18-03.exe

TimeDateStamp

2011-04-30 08:26:40

100%

%3 Detect It Easy v3.01

Entry point
00405130

Import
SizeOfImage
0000b000

Endianness

e LE

PECompact(1.68-1.84)[-]
Microsoft Visual C/C++(6.0)[-]
Microsoft Linker(6.0)[GUI32]

Base address

Disasm

00400000 Memory map

| [m—e—)

Architecture
1386

j Deep scan

103 msec

Right off the bat, we can tell that this is most probably packed, since DiE has detected that the
PECompact packer is likely being used. On top of this automatic detection, there’s a few other key
indicators that suggest packing:

&

o | B8 entropy

File name

C:/Users/Student

Type
PE32
File type

A=b Regions

PE
Section(0)['pec1’
Sections ection@) pect]

Section(1)['pec2]
0003

Scan

Detect It Easy(Di

packer
compiler

linker

Signatures

m

;; IDA - Lab18-0;

Total

7.21808

%3 Detect It Easy v3.01

Offset

Offset
00000400
00002400

00000000

Size
00002000
00000800

10,000

Reload
00003000

Entropy Status
7.80859 packed
6.67710 packed

12,000

MIME

Hash

Entropy

N
|
’ Strings
[
|

‘ Options
’ About

’ Exit

| Right Ctrl

MIME
Hash
Strings
Entropy

Hex

Options
About

Exit

| Right Curl

A rather large section of the executable has a very high entropy — almost 8! This suggests that this
section is packed. Since most packers pack the code of an executable, we should suspect that a large
section with an extremely high entropy contains the packed code. There are other indicators as well:

File nar |
Reload Disasm |: Readonly
C:/Us¢

Hex Hash 64 Hash 32

File typ 5
Disasm 00000002b711c4f7 8a9895fc
PE32 Strings

Memory map iginalFirstThu imeDateStam orwarderChai Name FirstThunk Hash
i a’:"‘r’@’c o [0 [0000a03c 00000000 00000000 |0000a058 |0000a03c [2df20f40 | KERNEL32.D
uristr
Section | DOS. HEADER 1 0000aOce 00000000 00000000 0000a0c3 0000aOce 347caSds WS2_32.dll

~ IMAGE_NT_HEADERS
IMAGE_FILE_HEADER
~ IMAGE_OPTIONAL _HEADER

IMAGE_DIRECTORY_ENTRIES

Sections

Thunk Ordinal int Na
o Toooososs | Jowo liosclbrah]
0000a074 0000 GetProcAddress
0000a085 0000 VirtualAlloc
0000a094 0000 VirtualFree
0000a0a2 0000 ExitProcess
0000a0b0 0000 GetModuleHandleA

9 Detect It Ea

[P][V T

Note that there are very few imports for this executable, which means that the executable will need to
dynamically load and link various DLLs during runtime if it wants to do anything particularly interesting.

In fact, of the few functions that are actually important on load, we see LoadLibraryA and
GetProcAddress — these allow the program to do that kind of dynamic loading and linking. This also
strongly suggests packing.

Attempting to disassemble (or decompile) this executable yields less than desirable results:

&
Q IDA - Lab18-03.exe C:\Users\Student\Desktop\Practical Malware Analysis Labs\BinaryCollection\Chapter_18L\Lab18-03.exe = =] X
File Edit Jump Search View Debugger Options Windows Help
SH mvaey HHK A4 3 u B0 ddet L X > OO Lol Windows debugger ~ % ¢ @ I -
L e ¥
Library function [l Regular function [l Instruction Data Unexplored External symbol
71 Functions window 08 x [@ AViewA B @ HexView-1 @ Structures bl Enums 5 Imports @ Exports
Function name
7] start
£ sub_405141
a5
fpublic start
start proc near
jmp short loc_485138|
=
loc_405138:
pushf
pusha
call sub_405141
L€ > xor eax, eax
4 Graph overview o s x
% 100.00% (-551,-80) (384,0) 00002530 0000000000405130: start (Synchronized with Hex View-1)
[= Output window o8& x
|The initial autoanalysis has been finished. fd
jo

AU: idle Down Disk: 56GB

£ IDA-1ab18-03.exe 24 Detect It E2

IDA very quickly runs into bytes that it can’t interpret as assembly code and its analysis fails. Even worse,
there doesn’t appear to be any obvious tail jump instruction, even if we check the call to the function
405141:

]

R 1DA - Lab18-03.exe C:\Users\Student\Desktop\Practical Malware Analysis Labs\BinaryCollection\Chapter_18L\Lab18-03.exe - o
File Edit Jump Search View Debugger Options Windows Help
AH ®«vey BEY A 3 o DO dAdetPv L@ X > OO Loal Windows debugger ~ % i T I
& 1 v
Library function [l Regular function [l Instruction Data Unexplored External symbol

71 Functions window o0& x 3 IDA View-A o 3 Hex View-1 A Structures a) Enums Lo Imports B Exports

Function name
Q start
F]sub_405141

< >
4 Graph overview oe x i
sub_s05141 endp
€4.00% (-1081,-81) (929,543) 00002541 0000000000405141: sub_405141 (Synchronized with Hex View-1)
[= Output window o & x
The initial autoanalysis has been finished. S
pC

AU: idle Down Disk: 56GB

% DA - Lab18-03.ee .. etect It Easy v3.01

If we assume that this malware is actually functional, then we can pretty safely assume that a tail jump
will eventually exist when the unpacking stub finishes execution: the program’s code is probably going
to be dynamically modified while its still loaded to insert a jump instruction (among other things) into it.
Since this isn’t really something that we can discover via static analysis, we shift gears to a more
dynamic method:

]

& Immunity Debugger - Lab18-03.exe - [CPU - main thread, module Lab18-03] - s
€] File View Debug Plugins Immlib Options Window Help Jobs

OHTE WX UM HH A 1 em e wh e Pk bz r . s 2 I

EB 06 T La
68 77150000 PUSH 1577 PO19FFCC
Cc3 00405130 OFFSET Lab18-03.<{ModuleEntryPoint
28 EQSHFD 2405130 OFFSET Lab18-03.<ModuleEntryPoint
E8 02000000 L 13. € 141 OFF 74
33C0 EAX,EAX PO19FF8
X EA,\’((,ESP 00405130 OFFSET Lab18 ModuleEntryPoint
04 ’ Eé;k\\"’qEB” I 90405130 OFFSET Lab18-03.<ModuleEntryPoint]
Sp”').(l\ 00405130 Lab18-03.<{ModuleEntryPoint>
FC y +DHORD PT ' 2bit @(FFFFFFFF)
3F904000 Lat % C 3 it O(FFFFFFFF)
EBP, EB; ‘ =

E6904000
9992400@
QAR

KERNEL32.BaseThreadlr
w RETURN to ntdll.77AS

08

<L Immunity Debugge...

Loading the program in immunity debugger show us mostly the same things we saw when we opened it
with IDA: a small jump, a pusha, a pushf, and a function call. The pusha and pushf instructions (which
push all registers and flags onto the stack respectively) specifically give us a hint as to something the
malware will do after it is unpacked (and give us the means to unpack it and analyze it), but to
understand why, we need to review how the stack works. The stack is a data structure that exists in a
process’s memory and grows “downwards” (towards higher memory addresses) as more data put onto
the stack. Data is removed from the stack in a “bottom up” fashion, where data that was written to the
stack more recently is read and removed first. The CPU keeps track of where we are in the stack using a
register (listed as ESP on the register view of immunity):

ESP —x

ESP —x

foo

Y

The stack pointer starts at the “top” of the stack — when data is inserted onto the stack, it is placed at
the location denoted by ESP (which is then incremented to move on to the next free memory location).

foo

ESP —x

bar

When data is read and removed from the stack, we look at the data

foo

ESP —x

bar

ESP —x

foo

Y

ESP —x

Y

Read:

bar

Read:

foo

One of the first things the malware does is execute the instructions pusha and pushf (displayed as
pushad and pushfd in immunity — the “d” suffix indicates that it is operating on a DWORD, which is the
size of an entire 32 bit register). Pusha will push each of the CPU registers onto the stack (in a particular
order) when it is executed, and pushf does the same with the flags. This suggests that the malware is
trying to preserve the state of the CPU right when the program starts, probably to restore it later when
the unpacking (which will certainly modify the registers while executing) is finished and it’s about to
jump to the newly unpacked code. We can actually exploit this fact using a memory breakpoint.
Consider what the stack looks like right after pusha executes: it will have all of the CPU registers placed
onto the stack:

eax

ecX

ESP —» edi

If the malware was truly interested in restoring the processor state right before jumping to the actual
code, we can pretty safely assume that it will keep these values exactly as they are on the stack until it
comes time to restore them — probably using an instruction like popa (which restores all registers from
the stack). This means that the memory locations on the stack that are storing the saved registers aren’t
going to be accessed (i.e. popped) until that time. A lot is going to happen during the unpacking —
registers will change values, and things will probably get put onto and removed from the stack, but the
malware will likely be careful not to pop any of those saved registers during that process in order to
keep them safe until it runs the popa command. If we could monitor the memory at (for example) the
location on the stack that is storing the edi register (which is the last register to be pushed by pusha) to
see when it actually gets popped, we will be able to tell the exact moment where popa is called. We
can’t just search the disassembled malware code for the popa instruction since we know (from our
earlier static analysis) that it hasn’t been unpacked yet (meaning it’s obfuscated and unreadable) - we
won’t see it in the program memory at all until the unpacking finishes. Immunity allows us to set
memory breakpoints pretty easily — the main challenge is figuring out where in the program memory the

registers we’re interested in are. Thankfully, this isn’t actually too hard if we’re clever about stepping
through the program. Consider the above diagram showing the stack immediately after pusha executes:
the stack pointer (ESP) is pointing at the memory location that is storing edi. If we set a memory access
breakpoint at that location, then it will likely trigger right after the popa instruction (which will access
that memory address) gets executed. The best way to do this is to step through the program from the
beginning until right after we execute pusha:

&
@ Immunity Debugger - Lab18-03.exe - [CPU - main thread, module Lab18-03] - s}
€] File View Debug Plugins Immlib Options Window Help Jobs

% T WX b I SN o 1 emtwhoc Pk bz r .. s 2
0040 0 EB 06 ~ 1 2040

$ T La
PUSH 1577

OFFSET Lab18-03.<ModuleEntryPoint
OFFSET Lab18-¢ {ModuleEntryPoint

OFFSET Lab18 (M 1 ryPoint}
OFFSET Lab18-0: d tryPoint

Lab18-03.0040513A
2bit O(FFFFFFFF)

QO19FFS0
PO15FF 58

OFFSET Lab18
OFFSET Lab18

Iv RETURN

Immunity Debugge...

Note that the ESP register is blue, meaning it was just changed by the last instruction. This makes sense
since we just pushed a whole bunch of registers onto the stack, so ESP should have decreased by quite a
few bytes (if you pause right after pushf instead, you’ll see that ESP is all the way back at 00199FF70 —
we just pushed 32 bytes onto the stack with pusha). The memory location currently pointed to by ESP
(0019FF50) is the memory location that is currently storing the value of edi on the stack. In fact, if you
look at the memory viewer at the bottom left, you’ll see that 0019FF50 has the values 30 51 40 00 in
memory — this is storing the value 00405130, which is exactly what we see in the current edi register.
This is the memory location we need to monitor. We can tell immunity to do just that by highlighting all
four of those bytes, right clicking, then going to Breakpoint->Hardware, on access->Dword:

& immunity Debugger - Lab18-03.exe - [CPU - main thread, module Lab18-03] - s
[File View Debug Plugins Immlib Options Window Help Jobs
% TE «x » ol e] Backup
€ % D6 Copy

Binary /
Breakpoint Memory, on access 4 OFFSET Lab18-03.<{ModuleEntryPoint
: OFFSET Lab18-¢ {ModuleEntryPoint>

Search for Memory, on write

Follow DWORD in Dump TR G s

L | B W 130 OFFSET Lab18-03.<ModuleEntry
Hex > Hardware, on execution Dword ; OFFSET Lab18-03.<{ModuleEntry

Te-t DA4C 3A Labl18-03.004051
ot 32bit O(FFFFFFF

Goto

A
A

3

F)

Long ;8- 0=)¢ F c FF)
Float > % %%, 3 FF)
F)

F)

Q(FFFFFFF

Disassemble
206000 (Fr—

Special
- -03.
Appearance N :‘ : DO 5 %) 0 S' tzg%g—ﬂg.

OFFS Lab18-03. <{Mod
OFFSET Lab18-03. <Modt

RETURN to KERNEL32.7

Step over (F8)> Paused
11 PM

s ity De -
mmunity Debugge. 4/27/2022

Now immunity will automatically pause execution right after that memory location gets accessed, which
should only happen when popa gets executed. If we start running the program, we'll find that it does
just that:

&
& Immunity Debugger - Lab18-03.exe - [CPU - main thread, module Lab18-03) - o X
€] File View Debug Plugins Immlib Options Window Help Jobs

OB TE x> I MY 1l emtwhcPkbzr. s ? I
¢ - ~ Re: isters (FPU)
01
30 %EE§E¥ taglgfqg.gmodu{eEHtFVEOLHt
(< -03. <M Yy t
68 77154000 PUSH S Riords. (odutsentryrioln
C2 0400
8BBS SB974000
@BF6 QFFSET Lab18-03.<ModuleEntryPoint

74 18 OFFSET Lab 3.<ModuleEntryP
8B9E E6904000) E ia 18-0@ oduleEntryPoint
Q3F2 Lab18-03

X% %% %% % %] o < < 9 i D(FF FFF)
55 oB : . ! & 32bit FFF F

32bit Q(FFFFFFFF)
32bit Q(FFFFFFFF)

RETURN to KERNEL32.7
KERNEL32.BaseThreadl
RETURN to ntdll.7

QO19FF98

Popa just executed, and we are now on popf. We suspect that the program has finished its unpacking,
and is about to execute the tail jump. Although we don’t see a long jump instruction specifically, we do
see a push followed by a return, which does the same exact thing (return pops a value from a stack then
jumps to it). In fact, we see that the value being pushed immediately before the return is 401577, which
is very far away from where the program is currently executing in memory (40754F). This is probably the
tail jump. Stepping into the jump puts us in a strange place:

A

& Immunity Debugger - Lab18-03.exe - [CPU - main thread, module Lab18-03)
€] File View Debug Plugins |mmlib Options Help Jobs

% T O x bl e LY

Window

Immunity Debug wtitled.png - Paint

lemtwhcPkbzr.

— 5] X

Y o s st ssessment it emes]
~ Registers (FPU)
@Q19FFCC

k

004 OFFSET Lab18-03.<ModuleEntryPoint
’ OFFSET
L

Lab18-03. {ModuleEntryPoint

FFSET Lab18-03.<{ModuleEntryPoint
OFFSET Lab18-03.<ModuleEntryPoint

Lab18-03. 00401577

32bit Q(FFFFFFFF)
32bit Q(FFFFFFFF)
FFFFFFFF)

FFFFF)

KERNEL32.BaseThreadl
w RETURN to ntdll.7

2 = oM E U@ Rlreht an

We just jumped into what immunity is telling us is part of the program that contains data, not code. It
would be very strange for the malware to make execution jump to something that isn’t executable
bytecode (which in most cases will cause a crash), so we suspect that this actually IS code that immunity
is displaying as data. The reason that immunity is doing this is that when it scans the program when it
opens, it tries to classify different sections as code, data, etc. If it finds that a section contains data, it
won’t automatically change its classification if that section gets modified in memory. Instead, we need
to manually tell it that this is probably code now- this can be done by right clicking on the current
instruction, going to Analysis, and pressing “Analyse code” (yes, they spelled “Analyze” wrong).

&} Immunity Debugger - Lab18-03.exe - [CPU - main thread, module Lab18-03]
] File View Debug Plugins Immlib Options Window Help Jobs
ST ax > 1 wfHAYJ* 1l emtwhcPkbz-

ASCII
Q 00 0Q@.e
! c

<L Immunity Debugge..

ntitled.png - Paint

This will make things a bit more readable:

-)

Backup
Copy < <{
Binary OFFSET Lab18-03.<{ModuleEntryPoint
Modify byte OFFSET Lab18-¢ {ModuleEntryPoint
Assemble Space
Label g
Comment @ OFFSET Lab18-03.<{ModuleEntryPoint
Add Header OFFSET Lab18-03.<ModuleEntryPoint
Modify Variable Lab18-03.00401577
Breakpoint 32bit FFFFFFFF
Hit trace 3 32bit FFFFFFFF)
Bt 32bit Q(FFFFFFFF)

Q(FFFFFFFF)
Goto 5%
Thread
Follow in Dump
< KERNEL32.BaseThreadl
earch for
Find references to \w RETURN to ntdll.77AS
View 00203000 .0 .
Copy to executable — E“’ 3“"9[}3
Analysis > Analyse code

Beokark Remove analysis from module

Scan object files Ctd+0

Dump process (OllyDumpx)
Remove object scan from module
Appearance

Remove analysis from selection BKSpe

During next analysis, treat selection as

& Immunity Debugger - Lab18-03.exe - [CPU - main thread, module Lab18-03] - 8 x

€] File View Debug Plugins |mmlib Options Window Help Jobs

R TE axr U HHEY lemetwhcP kb2 . s ? I
=] ~ Registers (FPU)

l°n OFFSET Labl18 {ModuleEntryPoint
) OFFSET Labl18- {ModuleEntryPoint
)

EAX
/ DNORD PTR FS:[@],) QFFSET Lab18-83.<{ModuleEntryPoint
UB ESP v ¢) OFFSET Lab18 {ModuleEntryPoint

04015 Lab18-03. 8040157

ES Q(FFFFFFFF)
t @(FFFFFFFF)

| _) b

Analysing Labi8-83: 52 heuristical procedures., 68 calls to known. 5 calls to guessed functions Paused

Now we can use OllyDumpEx to dump the unpacked executable and ImpRec to fix the import table, but
before we do that, we should probably look through some of the unpacked code to see if we can figure
out some things about it (though we’ll need to make the code view a bit bigger).

F
& Immunity Debugger - Lab18-03.exe - [CPU - main thread, module Lab18-03] — [X
€] File View Debug Plugins Immlib Options Window Help Jobs

BT WX b I WA N L emtwhoc Pk bz 1. s 7 I
E8 MOV LESP
30404000 EBNOEE PTR DS:[404232] KERNEL32.GetVersion
M DL, AH
D4S24000 M DHORD TR DS:[4@52D41,EDX
FF200000
De524000
A
CC524000
C1E8 10 10
A3 C8524000 V DNORD PTR DS:[4@52C81,EAX
6A @0 P (5]
E8 33090000 3.00401F08
59

85ce

S 28
6A 1C
E8 9A0000¢

59
8365 FC BB

DNORD PTR DS: [42402C] [GetCommandLineA
DHWORD PTR DS:[4@57D81,EAX

74 INEEE]
9FF78 020

Analysing LabiB-@3: 52 heuristical procedures. 68 calls to known. 5 calls to guessed functions

Specifically, the calls to GetVersion and GetCommandLineA suggest that this is a command line program.
If we saw calls to RegisterClassA, LoadlconA, and FindWindowA instead, then we’d probably be dealing
with a GUI based program. Most analysis at this point should be done on an unpacked binary, so let’s do
that by going to Plugins->OllyDumpEX->Dump process

& Immunity Debugger - Lab18-03.exe - [CPU - main thread, module Lab18-03] - u
€] File View Debug Plugins ImmLib Options Window Help Jobs x
OBMETERD 1 Bookmans Cwh e Pk bz . s 2 e
1157 . 2 Embedded Command Line
3 OltyDumpEx Dump process

8BEC M Plugin debug toggle

6A FF PUSH

68 C0404000 PUSH

68 3C204000 PUSH »18-U3. BU4u203C G

64:A1 0800@0@(; E : 0 FFSET Lab18-03.<ModuleEntryPoint

S50 H EAX OFFSET Lab18-03.<ModuleEntryP t
64:8925 0002 MOV DWORD PTR FS:[@1,ESP P SOESSENFRYIOSD
83EC 10 B ESP, 10 Lab18-03.

PUSH EBX C O E 32bit Q(FFFFFFFF)
PUSH ESI S 32bit Q(FFFFFFFF)
PUSH ED % 32bit Q(FFFFFFFF)

/ RETURN to KERNEL32.74
KERNEL32.BaseThreadl

19FF80
19FF84 | 77AS57 z RETURN to ntdll.77AS

< Immunity Debugge...

OllyDump needs to know the RVA (relative virtual address) of the OEP. The OEP is the Original Entry
Point of the program, which is where the actual malware itself (rather than the unpacking stub) starts
executing. Generally, this is the instruction jumped to by the tail jump, which in our case is 00401577.
The RVA of an address in program memory is just the address minus the base address of the program
(which we can see in our very first screenshot of DiE). Here, this is 401577-400000=1577. We can either
manually enter this into the Entry Point field, or if execution is currently paused at the OEP (which it
should be!), we can press “EIP as OEP”, and OllyDump will calculate it for us.

o
Z OllyDumpEx v1.72 - Lab18-03.exe
: i
= Module
) WX P Il N #l=f 1
» = 5 i 43 1l Base * Module |C:\Users\Student\Desktop\Practical Malware Analysis Labs\BinaryCollection v | i |
Memory [004 1
Cancel -
Address |)) | Lab18-03.{ModuleEntryPoint
ér FF ListSection: ¢ BaseOnly (" Al Memory Address Range [004 -[o34 Lab18-03.{ModuleEntryPoint
Dump Mode: & Rebuid Binaty (Raw) " Binary (Vitual)
68 Cod04000 [N, iy |
Search
64: A1 000D N -03. <M +
S0 SeachAtes @ Select Al Memory (exchde ksted modue) Searchimags | | Fomat Lab18-03. <ModuleEntryPoint
e i g) e | & pe Lab18- ModuleEntryPoint
64:8925 00000« IR wazy (sow) o o
3EC 10 R | SeachResu =] ELF)3. 00401
Image Option)(FFFFFFFF)
Image Base: 00400000 Fix Virtual Offset [V Prefer Original Characteristics (Need Rescan)
¥ Fix Comupted Image Header Structure
Image Size: (0000000 I~ Disable Relocation
EruyPort [00001577 |[GGEP 53 0EP Auto Adust Image Base Address 2 YR
____] Rebuid DataDirectory (Follow ImageBase Change) -Iv KERNEL32.BaseThreadl
I~ Search All Occurrences .
Section w RETURN to ntdll.77AS]
Select Al | Select BaseModule| Select Private/All | Select Private/Exec DeSelect All | .
| Addess| Size Owner | Section [Type [Access [VituslOtiset| VitualSize | Chasacterisios | _
[00401000 00004000 Lab1803 pecl Imag R 00001000 00004000 E0000020
| ¥ 00405000 00005000 Lab1803 pec2 Imag R 00005000 000DS000 C0000040
V] 00404000 00001000 Lab1803 astc Imag R 0000A000 00001000 £0000040

Execute till return (Ctrl+F9>

<L Immunity Debug titled.png - Paint

Y ey | & [®lrght ol

Now we just press “Dump” and save our dumped executable somewhere.

e]
Base * Module [C:\Users\Student\Desktop\Practical Malware Analysis Labs\BinaryCollection v | Dap
Memory [»
b & Save Dump to File
Address | ntryPoint
éA FF ListSection: * Base Only (™ AlM(t BinaryCol... > Chapter_ 18L ntryPoint
DumpMode: (& Rebuid Binar
68 0404000 insgeSouce: © Memay C D] Ogenize = Newfold .
68 3C204000 3 N =
Search c 9 A
64: A1 00OV NENE—-—_. Chapter 9
50 SeachAres (& Select AllM(i
64: 8925 DDV Search Mode: & Stiict Fuzzy Chapter_1 xe
83EC 10 Search Resut Chapter_1
Tmege Chapter_1 dump.exe
Image Base: [00400000 Fix Chapter_1 dump_.exe
Image Size: [0000BOO0 Chapter_1 xe
i xe
Entry Point: 00001577 Ge Chapter_1
dump.exe
Chapter_1
dump_exe
Section Chapter_1 Odiiie
SelectAll | Select BaseModule| Se Chapter_1
= v <
 Addees Size | Owner |
0040 0 Lab18-0 File name: | [EIERERCTINTROE

=
[00405000 0000S000 Lab18D
v

= U Save as type: Executable file (*.exe)
00404000 00001000 Lab18-0

~ Hide Folders Save Cancel

Paused
° 12:09 AM
S §1)
% ¢ 4/28/2022
2 = oM EUIE Rireh ot

Currently, the dumped executable will start running from the OEP. While this is what we want, we need
to make sure that all the libraries and functions that the unpacked malware needs are imported. The
unpacking stub actually dynamically loaded and linked all the relevant libraries, but the code that does
this won’t be executed in the dumped executable anymore (since we start at a point of the code that
normally executes after the unpacking stub finishes). We need to set up an Import Address Table (IAT)
that loads and links the relevant libraries and functions when the program is loaded. ImpRec lets us do
just that. First, we need to select the actively running malware process that we’re debugging in the
“Attach to an Active Process” drop down:

F2l

¥ =

n Untitled png 4 import REConstructor v1.7e FINAL (€) 2001-2010 MackT/uCF X

Aftach to an Active Process
[\users student\desktophpractcal makware analysis labs\bnarycollsction\chapter 180 Pick DLL

Imported Functions Found

Show Invaid |

Show Suspect]

[CAuto Trace |

Clear Imports ‘

Log

kemebase di
- . 2 lo shelp.di
This PC ImpRECini " ndows\system32\ws2_32 di ClearLog |
m3Zupertd.di

AT Infos needed New Impart Infos (11D+ASCI+LOADER) Options ‘

OEP 00005130 IAT AutoSearch RVA |DDDDC‘JUU Size |00000000
About

Rva [00000000 Size |00001000 ¥ Add new section
Exit ‘

LoadTiee | SaveTiee Get Imports Fix Dump

= ™ B A mmunityDebugge.. 4 Untitedpng - Paint 8 Import REConstrut..

The process should appear as long as it’s open and paused in the debugger. ImpRec will only work if the
malware is paused at the OEP, so it’s very important to make sure we are able to identify and get to the
OEP with Immunity. ImpRec also needs the RVA of the OEP entered into the OEP field. For this malware,
the RVA of the OEP was found to be 1577, so we put that in and press “IAT Autosearch”:

]

Altach to an Active Process

[e usershstudentidesktop\practical malware analysis labs\binarycollection\chapter_18Rat » Pick DLL |

Imported Functions Found

Show |Invalid

Show Suspect]

Found something! [“Auto Trace

nity
bugger Found address which m Try ‘Get Import Clear Imports
I it is not correct, try RVA 00

[Modue loaded: &

Module loaded o oK

Module loaded: d : _ Clear Log
Module loaded: c:\windows\system32ipeitd.dil

G 3sociated modules do
[Base: 00400000 5ize: 00008000 v

IAT Infos needed New Import Infos (IID+ASCIl+LOADER) Options
OEP (00001577 IAT AutoSeaich Rva [00000000 Sice (00000000
- About
Rva |00 FC W Add new sechon
Exit
LoadTiee| SaveTies| Getimpors Fix Dumg

4} Import REConstruct...

NErT EOIE R o

ImpRec uses the OEP to try and locate the malware’s IAT. By pressing “Get Imports”, it adds the libraries
and functions that were dynamically loaded by the unpacking stub to the IAT so they are loaded
automatically when the dumped program is executed:

A

¥ =

Recyde Bin Untitled.png £ Import REConstructor v1.7e FINAL (C) 2001-2010 MackT/uCF

Attach to an Active Process

 \users\student\desktop\practical malware analysis labs\binarycollection\chapter_18Nat v Pick DLL

Imported Funchons Found
kemel32 di FThunk: 00004000 NbFunc: Show Invalid
tva: 00004000 modt kernel "

Malware An, %
rva:0000 od ke 3 atePr Show Suspect

g v od kerne o ame: GetModuleFileN ameA
name:GetStingTypeA Auto Trace
name:LCMapStingw

Immunity ImportREC o C
i orck 0385 name:LCMapStringA

Debugger Cleas Imports

ImpREC.ini 9 : : RHA Clear Log

Options

About

Exit

IAT Infos needed New Import Infos (IID+ASCII+LOADER)
. OEP [00001577 IAT AutoSearch RvA [00000000 Size [0000033C

RVA (0C Size |000000CO v Add new section

Load Tree | Save Tree| Get Imports Fix Dump

12:18 AM
4/28/2022
2 = T EEES

oL immunity Debugge.. @ Untitledpng - Paint 43 Import REConstruct..

Note that kernel32.dIl imports many more functions now than it did in the packed executable. We can
save this patched executable to a file by pressing “Fix Dump” and selecting the dumped executable:

&

g =

Recydle Bin Untitled.png

README.txt

17}
Immunity ImportREC..
Debugger

ImpREC.ni

PS_Transcri.

FLARE

© m

& ntitled.png - Paint

#L Immunity Debugge...

c\users\student\desktop\p

=) kermel32.di FThurk.0000|
1va:00004000 mod kef
1va:00004004 mod kef

1va:00004018 mod kef
1va:0000401C mod ke

" |
2D (decimal 45) imported func

Fixing & dumped file.
o

2 (decimal 2]
20 (decimal:

IAT Infos needeq
OEP |00001577 IAT 4

RvA [00003FFC Size [{

& Choose your dump file to fix

Chapter_ 6
Chapter_7
Chapter 9
Chapter_1
Chapter_1
Chapter_1
Chapter_1
Chapter_1
Chapter_1
Chapter_1

Chapter_1

Chapter_1 o

File name: | Lab18-03_dump.exe

Get Imports J

& Import REConstruct..

BinaryCol... > Chapter_18L

older

<

PE files (*.exe, *.dll)

Fix Dump

4y 1250AM
| 4/28/2022
- EUIE Rree

The file will have the same name as the unpacked executable, but with an underscore at the end. We
can use this file to perform normal static analysis (such as opening it in DiE, IDA, or Ghidra) on the actual
unpacked code of the malware.

