The first thing we should do is take a look at the malware in Detect it Easy:
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Right off the bat, we can tell that this is most probably packed, since DiE has detected that the
PECompact packer is likely being used. On top of this automatic detection, there’s a few other key
indicators that suggest packing:
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A rather large section of the executable has a very high entropy — almost 8! This suggests that this
section is packed. Since most packers pack the code of an executable, we should suspect that a large
section with an extremely high entropy contains the packed code. There are other indicators as well:
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Note that there are very few imports for this executable, which means that the executable will need to
dynamically load and link various DLLs during runtime if it wants to do anything particularly interesting.

In fact, of the few functions that are actually important on load, we see LoadLibraryA and
GetProcAddress — these allow the program to do that kind of dynamic loading and linking. This also
strongly suggests packing.

Attempting to disassemble (or decompile) this executable yields less than desirable results:
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IDA very quickly runs into bytes that it can’t interpret as assembly code and its analysis fails. Even worse,
there doesn’t appear to be any obvious tail jump instruction, even if we check the call to the function
405141:
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If we assume that this malware is actually functional, then we can pretty safely assume that a tail jump
will eventually exist when the unpacking stub finishes execution: the program’s code is probably going
to be dynamically modified while its still loaded to insert a jump instruction (among other things) into it.
Since this isn’t really something that we can discover via static analysis, we shift gears to a more
dynamic method:
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Loading the program in immunity debugger show us mostly the same things we saw when we opened it
with IDA: a small jump, a pusha, a pushf, and a function call. The pusha and pushf instructions (which
push all registers and flags onto the stack respectively) specifically give us a hint as to something the
malware will do after it is unpacked (and give us the means to unpack it and analyze it), but to
understand why, we need to review how the stack works. The stack is a data structure that exists in a
process’s memory and grows “downwards” (towards higher memory addresses) as more data put onto
the stack. Data is removed from the stack in a “bottom up” fashion, where data that was written to the
stack more recently is read and removed first. The CPU keeps track of where we are in the stack using a
register (listed as ESP on the register view of immunity):

ESP —x

ESP —x

foo

Y

The stack pointer starts at the “top” of the stack — when data is inserted onto the stack, it is placed at
the location denoted by ESP (which is then incremented to move on to the next free memory location).
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One of the first things the malware does is execute the instructions pusha and pushf (displayed as
pushad and pushfd in immunity — the “d” suffix indicates that it is operating on a DWORD, which is the
size of an entire 32 bit register). Pusha will push each of the CPU registers onto the stack (in a particular
order) when it is executed, and pushf does the same with the flags. This suggests that the malware is
trying to preserve the state of the CPU right when the program starts, probably to restore it later when
the unpacking (which will certainly modify the registers while executing) is finished and it’s about to
jump to the newly unpacked code. We can actually exploit this fact using a memory breakpoint.
Consider what the stack looks like right after pusha executes: it will have all of the CPU registers placed
onto the stack:

eax

ecX

ESP —» edi

If the malware was truly interested in restoring the processor state right before jumping to the actual
code, we can pretty safely assume that it will keep these values exactly as they are on the stack until it
comes time to restore them — probably using an instruction like popa (which restores all registers from
the stack). This means that the memory locations on the stack that are storing the saved registers aren’t
going to be accessed (i.e. popped) until that time. A lot is going to happen during the unpacking —
registers will change values, and things will probably get put onto and removed from the stack, but the
malware will likely be careful not to pop any of those saved registers during that process in order to
keep them safe until it runs the popa command. If we could monitor the memory at (for example) the
location on the stack that is storing the edi register (which is the last register to be pushed by pusha) to
see when it actually gets popped, we will be able to tell the exact moment where popa is called. We
can’t just search the disassembled malware code for the popa instruction since we know (from our
earlier static analysis) that it hasn’t been unpacked yet (meaning it’s obfuscated and unreadable) - we
won’t see it in the program memory at all until the unpacking finishes. Immunity allows us to set
memory breakpoints pretty easily — the main challenge is figuring out where in the program memory the



registers we’re interested in are. Thankfully, this isn’t actually too hard if we’re clever about stepping
through the program. Consider the above diagram showing the stack immediately after pusha executes:
the stack pointer (ESP) is pointing at the memory location that is storing edi. If we set a memory access
breakpoint at that location, then it will likely trigger right after the popa instruction (which will access
that memory address) gets executed. The best way to do this is to step through the program from the
beginning until right after we execute pusha:
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Immunity Debugge...

Note that the ESP register is blue, meaning it was just changed by the last instruction. This makes sense
since we just pushed a whole bunch of registers onto the stack, so ESP should have decreased by quite a
few bytes (if you pause right after pushf instead, you’ll see that ESP is all the way back at 00199FF70 —
we just pushed 32 bytes onto the stack with pusha). The memory location currently pointed to by ESP
(0019FF50) is the memory location that is currently storing the value of edi on the stack. In fact, if you
look at the memory viewer at the bottom left, you’ll see that 0019FF50 has the values 30 51 40 00 in
memory — this is storing the value 00405130, which is exactly what we see in the current edi register.
This is the memory location we need to monitor. We can tell immunity to do just that by highlighting all
four of those bytes, right clicking, then going to Breakpoint->Hardware, on access->Dword:
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Now immunity will automatically pause execution right after that memory location gets accessed, which
should only happen when popa gets executed. If we start running the program, we'll find that it does
just that:
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Popa just executed, and we are now on popf. We suspect that the program has finished its unpacking,
and is about to execute the tail jump. Although we don’t see a long jump instruction specifically, we do
see a push followed by a return, which does the same exact thing (return pops a value from a stack then
jumps to it). In fact, we see that the value being pushed immediately before the return is 401577, which
is very far away from where the program is currently executing in memory (40754F). This is probably the
tail jump. Stepping into the jump puts us in a strange place:
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We just jumped into what immunity is telling us is part of the program that contains data, not code. It
would be very strange for the malware to make execution jump to something that isn’t executable
bytecode (which in most cases will cause a crash), so we suspect that this actually IS code that immunity
is displaying as data. The reason that immunity is doing this is that when it scans the program when it
opens, it tries to classify different sections as code, data, etc. If it finds that a section contains data, it
won’t automatically change its classification if that section gets modified in memory. Instead, we need
to manually tell it that this is probably code now- this can be done by right clicking on the current
instruction, going to Analysis, and pressing “Analyse code” (yes, they spelled “Analyze” wrong).
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This will make things a bit more readable:
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Analysing Labi8-83: 52 heuristical procedures., 68 calls to known. 5 calls to guessed functions Paused

Now we can use OllyDumpEx to dump the unpacked executable and ImpRec to fix the import table, but
before we do that, we should probably look through some of the unpacked code to see if we can figure
out some things about it (though we’ll need to make the code view a bit bigger).
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Analysing LabiB-@3: 52 heuristical procedures. 68 calls to known. 5 calls to guessed functions

Specifically, the calls to GetVersion and GetCommandLineA suggest that this is a command line program.
If we saw calls to RegisterClassA, LoadlconA, and FindWindowA instead, then we’d probably be dealing
with a GUI based program. Most analysis at this point should be done on an unpacked binary, so let’s do
that by going to Plugins->OllyDumpEX->Dump process
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OllyDump needs to know the RVA (relative virtual address) of the OEP. The OEP is the Original Entry
Point of the program, which is where the actual malware itself (rather than the unpacking stub) starts
executing. Generally, this is the instruction jumped to by the tail jump, which in our case is 00401577.
The RVA of an address in program memory is just the address minus the base address of the program
(which we can see in our very first screenshot of DiE). Here, this is 401577-400000=1577. We can either
manually enter this into the Entry Point field, or if execution is currently paused at the OEP (which it
should be!), we can press “EIP as OEP”, and OllyDump will calculate it for us.
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Now we just press “Dump” and save our dumped executable somewhere.
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Currently, the dumped executable will start running from the OEP. While this is what we want, we need
to make sure that all the libraries and functions that the unpacked malware needs are imported. The
unpacking stub actually dynamically loaded and linked all the relevant libraries, but the code that does
this won’t be executed in the dumped executable anymore (since we start at a point of the code that
normally executes after the unpacking stub finishes). We need to set up an Import Address Table (IAT)
that loads and links the relevant libraries and functions when the program is loaded. ImpRec lets us do
just that. First, we need to select the actively running malware process that we’re debugging in the
“Attach to an Active Process” drop down:
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The process should appear as long as it’s open and paused in the debugger. ImpRec will only work if the
malware is paused at the OEP, so it’s very important to make sure we are able to identify and get to the
OEP with Immunity. ImpRec also needs the RVA of the OEP entered into the OEP field. For this malware,
the RVA of the OEP was found to be 1577, so we put that in and press “IAT Autosearch”:
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ImpRec uses the OEP to try and locate the malware’s IAT. By pressing “Get Imports”, it adds the libraries
and functions that were dynamically loaded by the unpacking stub to the IAT so they are loaded
automatically when the dumped program is executed:
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Note that kernel32.dIl imports many more functions now than it did in the packed executable. We can
save this patched executable to a file by pressing “Fix Dump” and selecting the dumped executable:

&

g =

Recydle Bin  Untitled.png

README.txt

17}
Immunity  ImportREC..
Debugger

ImpREC.ni

PS_Transcri.

FLARE

© m

& ntitled.png - Paint

#L Immunity Debugge...

c\users\student\desktop\p

=) kermel32.di FThurk.0000|
1va:00004000 mod kef
1va:00004004 mod kef

1va:00004018 mod kef
1va:0000401C mod ke

" |
2D (decimal 45) imported func

Fixing & dumped file.
o

2 (decimal 2]
20 (decimal:

IAT Infos needeq
OEP |00001577 IAT 4

RvA [00003FFC Size [{

& Choose your dump file to fix

Chapter_ 6
Chapter_7
Chapter 9
Chapter_1
Chapter_1
Chapter_1
Chapter_1
Chapter_1
Chapter_1
Chapter_1

Chapter_1

Chapter_1 o

File name: | Lab18-03_dump.exe

Get Imports J

& Import REConstruct..

BinaryCol... > Chapter_18L

older

<

PE files (*.exe, *.dll)

Fix Dump

4y 1250AM
| 4/28/2022
- EUIE Rree

The file will have the same name as the unpacked executable, but with an underscore at the end. We
can use this file to perform normal static analysis (such as opening it in DiE, IDA, or Ghidra) on the actual
unpacked code of the malware.



