Robotics and Human-Robot Interaction

Bookkeeping

- As posted: today is not probabilistic planning
- Phase II due date pushed back 1 day (see schedule)
- Project discussion updated
 - A discussion of logical equivalence
 - Debugged examples
- HW4 graded, HW5 back after holiday

Today’s Class

- What’s a robot (really)?
- What parts do they have?
- What are they used for?
- What kind of AI do they need?
- HRI
- Future Questions

Familiar Robots

- ED-209, RoboCop 2014
- Optimus Prime, Transformers 2007-2017
- Sentinel, X-Men, Days of Future Past 2014
- Ava, Ex Machina 2015

Some Current Robots

What is a Robot?

- “A robot is a reprogrammable, multifunctional manipulator designed to move … through variable programmed motions for the performance of a variety of tasks.” (Robot Institute of America)
- “A robot is a one-armed, blind idiot with limited memory and which cannot speak, see, or hear.”
- In practice: robotics intersects with any space in which computers move into the physical world.

Today’s Class

- What’s a robot (really)?
- What parts do they have?
- What are they used for?
- What kind of AI do they need?
- HRI
- Future Questions

Familiar Robots

- ED-209, RoboCop 2014
- Optimus Prime, Transformers 2007-2017
- Sentinel, X-Men, Days of Future Past 2014
- Ava, Ex Machina 2015

Some Current Robots

What is a Robot?

- “A robot is a reprogrammable, multifunctional manipulator designed to move … through variable programmed motions for the performance of a variety of tasks.” (Robot Institute of America)
- “A robot is a one-armed, blind idiot with limited memory and which cannot speak, see, or hear.”
- In practice: robotics intersects with any space in which computers move into the physical world.
What Are They Good At?

- What is hard for humans is easy for robots.
 - Repetitive tasks.
 - Continuous operation.
 - Complicated calculations.
 - Referring to huge databases/knowledge sources.
- What is easy for a human is (sometimes) hard for robots.
 - Reasoning.
 - Adapting to new situations.
 - Flexible to changing requirements.
 - Integrating multiple sensors.
 - Resolving conflicting data.
 - Synthesizing unrelated information.

What Should They Do?

- Boring and/or repetitive
 - welding car frames
 - part pick and place
 - manufacturing parts
- Inaccessible
 - space exploration
 - disaster cleanup
- High precision / speed
 - electronics testing
 - surgery
 - precision machining
- Dangerous
 - Search and Rescue
 - chemical spill cleanup
 - disarming bombs
- All of the Above
 - Continuous reef monitoring
 - Military surveillance

Categories of Robot Systems

- Manipulators
 - Anchored somewhere
 - Factory assembly lines
 - International Space Station
 - Hospitals
 - Common industrial robots
- Mobile Robots
 - Move around environment
 - UGVs, UAVs, UUVs, ocean explorers
- Mobile Manipulators
 - Both move and manipulate
 - Packbot, humanoid robots

Subsystems

Robots have:

- Sensors
 - Some way of detecting the world
- Effectors
 - Some way of affecting things in the world
 - Manipulation
 - Mobility
- Control/Software
 - Everything we’ve seen so far in this class and more...

Sensors

- Perceive the world
 - Passive sensors capture signals from environment. (cameras)
 - Active sensors probe the environment (sonar)
- What are they sensing?
 - The environment (range finders, obstacle detection)
 - The robot's location (gps, wireless stations)
 - Robot's own internals: proprioceptive sensors
 - Stop and think about that one for a moment. Close your eyes - where's your hand? Move it - where is it now?
Some Sensors

- Optical
 - Laser / radar
 - 3D
 - Color spectrum
- Pressure
- Temperature
- Chemical
- Motion & Accelerometer
- Acoustic
 - Ultrasonic
- E-field Sensing

Actuators / Effectors

- Take some kind of action in the world
- Involve movement of robot or subcomponent of robot
- Robot actions include
 - Pick and place: Move items between points
 - Continuous path control: Move along a programmable path
 - Sensory: Employ sensors for feedback (e-field sensing)

Mobility

- Legs
- Wheels
- Tracks
- Crawls
- Rolls

Big Dog

Putting it Together

Control: The Brain

- Open loop, i.e., no feedback, deterministic
 - Instructions
 - Rules
- Closed loop, i.e., feedback
 - Learn
 - Adapt
Where Is AI Needed?

- **Sensing:**
 - Interpreting incoming information
 - Machine vision, signal processing
 - Language understanding
 - So, basically everywhere
- **Actuation:**
 - What to do with manipulators and how
 - Motion planning and path planning
- **Control:**
 - Managing large search spaces and complexity
 - Accelerating masses produce vibration, elastic deformations in links, stresses on end actuator
 - Firmware and software: Especially with more intelligent approaches

Robotic Perception

- Sensing isn't enough: need to act on data sensed
- Data are noisy
- Environment is dynamic and partially observable
- Must be mapped into an internal representation
- Good representations:
 - Contain enough information for good decisions
 - Are structured for efficient updating
 - Are a natural (usable) mapping between representation and real world

Belief State

- **Belief state:** model of the state of the environment (including the robot)
 - X: set of variables describing the environment
 - X_t: state at time t
 - Z_t: observation received at time t
 - A_t: action taken after Z_t is observed
- After A_t, compute new belief state X_{t+1}
- Probabilistic, because uncertainty in both X_t and Z_t

Some Perception Problems

- Localization: where is the robot, where are other things in the environment
 - Landmarks
 - Range scans
- Mapping: no map given, robot must determine both environment and position.
 - SLAM: Simultaneous localization and mapping
- Probabilistic approaches typical
 - Especially machine learning!
- What about common sense? Learning?

Software Architectures

- **Low-level, reactive control**
 - Bottom-up
 - Sensor results directly trigger actions
- **Model-based, deliberative planning**
 - Top-down
 - Actions are triggered based on planning around a state model
- Which is an intelligence approach?

Low-Level, Reactive Control

- Augmented finite state machines
- Sensed inputs and a clock determine next state
- Build bottom up, from individual motions
- Subsumption architecture synchronizes AFSMs, combines values from separate AFSMs.
- Advantages: simple to develop, fast
- Disadvantages: Fragile for bad sensor data, don't support integration of complex data over time.
- Typically used for simple tasks, like following a wall or moving a leg.
Model-Based Deliberative Planning

- Belief State model
 - Current State, Goal State
 - Any of planning techniques
 - Typically use probabilistic methods
- Pros:
 - Can handle uncertain measurements and complex integrations
 - Can be responsive to change or problems.
- Cons:
 - Slow!
 - Developing models for, e.g., driving, is cumbersome.
- Typically used for high-level actions
 - Whether to move and in which direction.

Hybrid Architectures

- Usually, actually doing anything requires both reactive and deliberative processing.
- Typical architecture is three-layer:
 - Reactive Layer: low-level control, tight sensor-action loop, decision cycle of milliseconds
 - Deliberative layer: global solutions to complex tasks, model-based planning, decision cycle of minutes
 - Executive layer: glue. Accepts directions from deliberative layer, sequences actions for reactive layer, decision cycle of a second

Performance Metrics

- Speed and acceleration
- Resolution (in space)
- Working volume
- Accuracy
- Cost
- ...plus all the evaluation functions for any AI system.

Where Are Robots Now?

- Healthcare and personal care
 - Surgical aids, intelligent walkers, eldercare
- Personal services
 - Roomba!
 - Information kiosks, lawn mowers, golf caddies, museum guides
- Entertainment
 - Sports (robotic soccer)
- Human augmentation
 - Walking machines, exoskeletons, robotic hands, etc.

Big Dog Later

And More...

- Industry and Agriculture
 - Assembly, welding, painting, harvesting, mining, pick-and-place, packaging, inspection, ...
- Transportation
 - Autonomous helicopters, pilot assistance, materials movement
- Cars (DARPA Grand Challenge, Urban Challenge)
 - Antilock brakes, lane following, collision detection
- Exploration and Hazardous environments
 - Mars rovers, search and rescue, underwater and mine exploration, mine detection
- Military
 - Reconnaissance, senry, SAR, combat, EOD
- Household
 - Cleaning, mapping, ironing, tending bar, entertainment, telepresence/surveillance
Tomorrow’s Problems

- **Mechanisms**
 - Morphology: What should robots look like?
 - Novel actuators/sensors

- **Estimation and Learning**
 - Reinforcement Learning
 - Graphical Models
 - Learning by Demonstration

- **Manipulation (grasping)**
 - What does the far side of an object look like? How heavy is it?
 - How hard should it be gripped? How can it rotate?
 - Regrasping?

Since the DARPA challenge...

And more...

- **Medical robotics**
 - Autonomous surgery
 - Eldercare

- **Biological Robots**
 - Biomimetic robots
 - Neurobotics

- **Navigation**
 - Collision avoidance
 - SLAM/Exploration

Self-X Robots

- **Self-feeding**
 - Literally
 - Electrically

- **Self-replicating**
- **Self-repairing**
- **Self-assembly**
- **Self-organization**
- **Self-reconfiguration**

Human-Robot Interaction

- **Social robots**
 - In care contexts
 - In home contexts
 - In industrial contexts

- **Comprehension**
 - Natural language
 - Grounded knowledge acquisition
 - Roomba: “Uh-oh”

- **Basic idea:** Human-centric environments

Why?

- Robots are getting smaller, cheaper, and more ubiquitous
- Humans need to interact with and instruct them, naturally
 - Language, gesture, demonstration, ...

Key requirements:
- Language understanding learned from data
- Follow instructions in a previously unseen world
- Learn to parse natural language into robot usable commands
Robots in Human Spaces

- Robots now:
 - Expensive
 - Complex
 - Special-purpose
- Environments
 - Dedicated
 - Constrained
- Use and Management
 - Controlled by trained experts
 - Slow and expensive to reconfigure/repurpose

Some current problems

HRI
World Learning
Ethical Questions

Human-Robot Interaction

- How do humans handle human interaction?
 - Assumptions about retention and understanding
 - Anthropomorphization
- How do robots make it easier?
 - Apologize vs. back off
 - Convey intent
 - Cultural context (implicit vs. explicit communication)

Use Cases: Games

Grounded Language Acquisition:
- “Understanding” = transforming natural language into semantically meaningful representations
- Mapping that information to perceived world
- Learn a parser
 - Produce robot-executable commands from NL instructions

Direction Following

- "Turn right, then take your second left."

Novel Concepts

- Grounded L.A.
 - "Understanding" semantically
 - Mapping to representations
- BUT, this assumes we already know what things exist to map to!
- World modeling: learn new concepts from interactions

This is a red thing that you can eat, but don't eat these blue ones
Learning is required

- Robotic systems see new physical things
- Jointly model perceptions and language to create a new, consistent world model
- Learn previously unknown attributes from descriptions
 - Yellow: new word describing new idea

Why?

- Some concepts are hard without situated learning
 - Green, round, …
 - “Turning towards” something
- And the world is complicated.

What is the Parent Saying?

Watch the video: Then describe what the parent is saying to the child. In complete sentences.

- Pretend you are a parent teaching a child about something.
- The question is: "How does the parent describe this group of objects?"

λx. orange(x) ∧ spheroid(x)

Multimodal Interactions

- Larger data set of interactions
- Capturing:
 - Speech
 - Gesture
 - RGB-D
- How do data sources combine?
- Can we model:
 - … world?
 - … language?
 - … user intentions?
Multimodal Human Input

“These are green objects seeming like vegetables. This one is a ... a cucumber ... or a dull oval thing. And this one is a pepper. Like slightly rounded ... high cone.”

What Should They Do?

- Boring and/or repetitive
 - welding car frames
 - part pick and place
 - manufacturing parts
- High precision / speed
 - electronics testing
 - surgery
 - precision machining
- Dangerous
 - chemical spill cleanup
 - disarming bombs
- Inaccessible
 - space exploration
 - disaster cleanup
- All of the Above
 - Continuous reef monitoring
 - Military surveillance

What Shouldn’t They Do?

- What decisions can be made without human supervision?
- May machine-intelligent systems make mistakes (like humans can)?
- May intelligent systems gamble when uncertain (as humans do)?
- Can (or should) intelligent systems exhibit personality?
- Can (or should) intelligent systems express emotion?
- How much information should the machine give the human?

Jobs For Robots

- Eldercare
- Law enforcement
- Politics
- Space exploration
- Underwater exploration
- Monitoring
- Military surveillance
- Military monitoring
- Domestic surveillance
- Unsupervised surgery
- Unsupervised driving
- Child care

The Future

- Robots that can learn.
- Robots that interact smoothly with people.
- Robots that do ticklish things autonomously.
- Robots that make other robots.
- Robots with “strong” AI.