State Spaces & Partial-Order Planning
AI Class 22 (Ch. 10 through 10.4.4)

Material from Dr. Marie desJardin, Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer
Overview

• What is planning?
• Approaches to planning
 • GPS / STRIPS
 • Situation calculus formalism [revisited]
 • Partial-order planning
Planning Problem

• What is the planning problem?
• Find a sequence of actions that achieves a goal when executed from an initial state.
• That is, given
 • A set of operators (possible actions)
 • An initial state description
 • A goal (description or conjunction of predicates)
• Compute a sequence of operations: a plan.
Typical Assumptions

- **Atomic time**: Each action is indivisible
- **No concurrent actions** allowed
- **Deterministic actions**
 - The result of actions are completely known – no uncertainty
- Agent is the **sole cause of change** in the world
- Agent is **omniscient**:
 - Has complete knowledge of the state of the world
- **Closed world assumption**:
 - Everything known-true about the world is in the *state description*
 - Anything not known-true is known-false
The **blocks world** consists of a table, set of blocks, and a robot gripper

Some domain constraints:
- Only one block on another block
- Any number of blocks on table
- Hand can only hold one block

Typical representation:
- `ontable(a)` `handempty`
- `ontable(c)` `on(b,a)`
- `clear(b)` `clear(c)`
Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
onetable(a)
onetable(b)
onetable(c)
handempty

Goal state:
on(b,c)
on(a,b)
onetable(c)
Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
onetable(a)
onetable(b)
onetable(c)
handempty

Goal state:
on(b,c)
on(a,b)
onetable(c)

Plan:
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)
Blocks world

- A micro-world consisting of a table, a set of blocks and a robot hand.

- Some domain constraints:
 - Only one block can be on another block
 - Any number of blocks can be on the table
 - The hand can only hold one block

- Typical representation:
 ontable(b) ontable(d)
on(c,d) holding(a)
clear(b) clear(c)

Meant to be a simple model!
Try demo at:
http://aispace.org/planning/
Major Approaches

- GPS / STRIPS
- Situation calculus
- Partial order planning
- Hierarchical decomposition (HTN planning)
- Planning with constraints (SATplan, Graphplan)
- Reactive planning
Planning vs. problem solving

• Planning and problem solving methods can often solve similar problems
• Planning is more powerful and efficient because of the representations and methods used
• States, goals, and actions are decomposed into sets of sentences (usually in first-order logic)
• Search often proceeds through plan space rather than state space (though there are also state-space planners)
• Sub-goals can be planned independently, reducing the complexity of the planning problem
Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
onetable(a)
onetable(b)
onetable(c)
handempty

Goal:
on(a,b)
on(b,c)
onetable(c)

A plan
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)
Yet Another BW planning problem

Initial state:
- clear(c)
- ontable(a)
- on(b,a)
- on(c,b)
- handempty

Goal:
- on(a,b)
- on(b,c)
- ontable(c)

Plan:
- unstack(c,b)
- putdown(c)
- unstack(b,a)
- putdown(b)
- putdown(b)
- pickup(a)
- stack(a,b)
- unstack(a,b)
- putdown(a)
- pickup(b)
- stack(b,c)
- pickup(a)
- stack(a,b)
Planning as Search

- Can think of planning as a search problem
 - **Actions**: generate successor states
 - **States**: completely described & only used for successor generation, heuristic fn. evaluation & goal testing
 - **Goals**: represented as a goal test and using a heuristic function
 - **Plan representation**: unbroken sequences of actions forward from initial states or backward from goal state
“Get a quart of milk, a bunch of bananas and a variable-speed cordless drill.”

Treating planning as a search problem isn’t very efficient!
General Problem Solver

- The **General Problem Solver (GPS)** system
 - An early planner (Newell, Shaw, and Simon)

- Generate actions that *reduce difference* between current state and goal state

- Uses **Means-Ends Analysis**
 - Compare what is *given* or *known* with what is desired
 - Select a reasonable thing to do next
 - Use a *table of differences* to identify procedures to reduce differences

- GPS is a state space planner
 - Operates on state space problems specified by an initial state, some goal states, and a set of operations
Situation Calculus Planning

• Intuition: Represent the **planning problem** using first-order logic
 • Situation calculus lets us reason about **changes** in the world
 • Use theorem proving to show (“prove”) that a sequence of actions will lead to a desired result, when applied to a world state / situation
Situation Calculus Planning, cont.

- **Initial state**: a logical sentence about (situation) S_0
- **Goal state**: usually a conjunction of logical sentences
- **Operators**: descriptions of how the world changes as a result of the agent’s actions:
 - $\text{Result}(a,s)$ names the situation resulting from executing action a in situation s.
- **Action sequences are also useful**:
 - $\text{Result’}(l,s)$: result of executing list of actions (l) starting in s
Situation Calculus Planning, cont.

- **Initial state:**
 \[\text{At(Home, } S_0) \land \neg \text{Have(Milk, } S_0) \land \neg \text{Have(Bananas, } S_0) \land \neg \text{Have(Drill, } S_0) \]

- **Goal state:**
 \[(\exists s) \text{At(Home,s)} \land \text{Have(Milk,s)} \land \text{Have(Bananas,s)} \land \text{Have(Drill,s)} \]

- **Operators:**
 \[\forall (a, s) \text{ Have(Milk,Result}(a, s)) \iff ((a=\text{Buy(Milk)} \land \text{At(Grocery,s)}) \lor (\text{Have(Milk, s)} \land a \neq \text{Drop(Milk)})) \]

- **Result}(a, s):** situation resulting from executing action a in situation s
 \[(\forall s) \text{ Result'}([], s) = s \]
 \[(\forall a, p, s) \text{ Result'}([a|p]s) = \text{Result'}(p, \text{Result}(a, s)) \]
Situation Calculus, cont.

• Solution: a plan that when applied to the initial state gives a situation satisfying the goal query:

\[
\text{At(Home, Result'(p,S_0))} \\
\land \text{Have(Milk, Result'(p,S_0))} \\
\land \text{Have(Bananas, Result'(p,S_0))} \\
\land \text{Have(Drill, Result'(p,S_0))}
\]

• Thus we would expect a plan (i.e., variable assignment through unification) such as:

\[
p = [\text{Go(Grocery), Buy(Milk), Buy(Bananas), Go(HardwareStore), Buy(Drill), Go(Home)}]
\]
Situation Calculus: Blocks World

• Example situation calculus rule for blocks world:
 • clear(X, Result(A,S)) ↔
 [clear(X, S) ∧
 (¬ (A=Stack(Y,X) ∨ A=Pickup(X))
 ∨ (A=Stack(Y,X) ∧ ¬ (holding(Y,S))
 ∨ (A=Pickup(X) ∧ ¬ (handempty(S) ∧ ontable(X,S) ∧ clear(X,S))))]
 ∨ [A=Stack(X,Y) ∧ holding(X,S) ∧ clear(Y,S)]
 ∨ [A=Unstack(Y,X) ∧ on(Y,X,S) ∧ clear(Y,S) ∧ handempty(S)]
 ∨ [A=Putdown(X) ∧ holding(X,S)]

• English translation: a block is clear if
 (a) in the previous state it was clear AND we didn’t pick it up or stack something on it successfully, or
 (b) we stacked it on something else successfully, or
 (c) something was on it that we unstacked successfully, or
 (d) we were holding it and we put it down.

Wow.
Situation Calculus Planning: Analysis

• Fine in theory, but:
 • Problem solving (search) is exponential in the worst case
 • Resolution theorem proving only finds a proof (plan), not necessarily a good plan

• So what can we do?
 • Restrict the language
 • Blocks world is already pretty small…
 • Use a special-purpose algorithm (a planner) rather than general theorem prover
Basic Representations for Planning

• Classic approach first used in the STRIPS planner circa 1970
• **States** represented as conjunction of ground literals
 • at(Home) ∧ ¬have(Milk) ∧ ¬have(bananas) ...
• Goals are conjunctions of literals, but may have variables*
 • at(?x) ∧ have(Milk) ∧ have(bananas) ...
• Don’t need to fully specify state
 • Un-specified: either don’t-care or assumed-false
 • Represent many cases in small storage
 • Often only represent **changes in state** rather than entire situation
• Unlike theorem prover, not finding whether the goal is **true**, but whether there is a sequence of actions to attain it

*generally assume ∃
Operators contain three components:

- **Action description**
- **Precondition** - conjunction of positive literals
- **Effect** - conjunction of positive or negative literals which describe how situation changes when operator is applied

Example:

\[
\text{Op[Action: Go(there), Precond: At(here) \land \text{Path(here,there)}, Effect: At(there) \land \neg At(here)]}
\]

All variables are universally quantified

Situation variables are implicit

- **Preconditions** must be true in the state immediately before operator is applied
- **Effects** are true immediately after
Blocks World Operators

- Classic basic operations for the blocks world:
 - \textit{stack}(X,Y): put block X on block Y
 - \textit{unstack}(X,Y): remove block X from block Y
 - \textit{pickup}(X): pickup block X
 - \textit{putdown}(X): put block X on the table

- Each will be represented by
 - Preconditions
 - New facts to be added (add-effects)
 - Facts to be removed (delete-effects)
 - A set of (simple) variable constraints (optional!)

(we saw these implicitly in the examples)
Blocks World Operators

• So given these operations:
 • $\text{stack}(X,Y)$, $\text{unstack}(X,Y)$, $\text{pickup}(X)$, $\text{putdown}(X)$

• Need:
 • Preconditions, facts to be added (add-effects), facts to be removed (delete-effects), optional variable constraints

Example: stack

preconditions($\text{stack}(X,Y)$, [$\text{holding}(X)$, $\text{clear}(Y)$])
deletes($\text{stack}(X,Y)$, [$\text{holding}(X)$, $\text{clear}(Y)$]).
adds($\text{stack}(X,Y)$, [handempty, $\text{on}(X,Y)$, $\text{clear}(X)$])
constraints($\text{stack}(X,Y)$, [$X \neq Y, Y \neq \text{table}, X \neq \text{table}$])
Blocks World Operators II

\textbf{operator}(\textit{stack}(X,Y),
\begin{itemize}
 \item \textbf{Precond} [holding(X), clear(Y)],
 \item \textbf{Add} [handempty, on(X,Y), clear(X)],
 \item \textbf{Delete} [holding(X), clear(Y)],
 \item \textbf{Constr} [X \neq Y, Y \neq \text{table}, X \neq \text{table}].
\end{itemize})

\textbf{operator}(\textit{unstack}(X,Y),
\begin{itemize}
 \item [on(X,Y), clear(X), handempty],
 \item [holding(X), clear(Y)],
 \item [handempty, clear(X), on(X,Y)],
 \item [X \neq Y, Y \neq \text{table}, X \neq \text{table}].
\end{itemize})

\textbf{operator}(\textit{pickup}(X),
\begin{itemize}
 \item [ontable(X), clear(X), handempty],
 \item [holding(X)],
 \item [ontable(X), clear(X), handempty],
 \item [X \neq \text{table}].
\end{itemize})

\textbf{operator}(\textit{putdown}(X),
\begin{itemize}
 \item [holding(X)],
 \item [ontable(X), handempty, clear(X)],
 \item [holding(X)],
 \item [X \neq \text{table}].
\end{itemize})
STRIPS Planning

- STRIPS maintains two additional data structures:
 - **State List** - all currently true predicates.
 - **Goal Stack** – push-down stack of goals to be solved, current goal at top.

- If current goal is not satisfied by present state:
 - Examine **add lists** of operators
 - Push operator and preconditions list on stack (and call them subgoals)

- When current goal *is* satisfied, POP it from stack.

- When an operator is on top stack
 - Record the application of that operator on the plan sequence
 - Use the operator’s add and delete lists to update current state.
Shakey video circa 1969

https://youtu.be/qXdn6ynwpiI or https://youtu.be/7bsEN8mwUB8
Goal Interactions

• Simple planning assumes that goals are **independent**
 • Each can be solved separately and then the solutions concatenated

• Let’s look at when that fails

![Initial state](image1)

![Goal state](image2)
Goal Interactions

- The “Sussman Anomaly”: classic goal interaction problem
 - Solving on(A,B) first (by doing unstack(C,A), stack(A,B))
 - Solve on(B,C) second (by doing unstack(A,B), stack(B,C))
- Solving on(B,C) first will be undone when solving on(A,B)
- Classic STRIPS can’t handle this (minor modifications can do simple cases)
Sussman Anomaly

Achieve on(a,b) via stack(a,b) with preconds: [holding(a),clear(b)]
| Achieve holding(a) via pickup(a) with preconds: [ontable(a),clear(a),handempty]
| Achieve clear(a) via unstack(_,1584,a) with preconds:
| [on(_,1584,a),clear(_,1584),handempty]
| Applying unstack(c,a)
| Achieve handempty via putdown(_,2691) with preconds: [holding(_,2691)]
| Applying putdown(c)
| Applying pickup(a)
| Applying stack(a,b)
Achieve on(b,c) via stack(b,c) with preconds: [holding(b),clear(c)]
| Achieve holding(b) via pickup(b) with preconds: [ontable(b),clear(b),handempty]
| Achieve clear(b) via unstack(_,5625,b) with preconds:
| [on(_,5625,b),clear(_,5625),handempty]
| Applying unstack(a,b)
| Achieve handempty via putdown(_,6648) with preconds: [holding(_,6648)]
| Applying putdown(a)
| Applying pickup(b)
| Applying stack(b,c)
Achieve on(a,b) via stack(a,b) with preconds: [holding(a),clear(b)]
| Achieve holding(a) via pickup(a) with preconds: [ontable(a),clear(a),handempty]
| Applying pickup(a)
| Applying stack(a,b)

From
[clear(b),clear(c),ontable(a),ontable(b),on(c,a),handempty]
To [on(a,b),on(b,c),ontable(c)]
Do:
 unstack(c,a)
 putdown(c)
 pickup(a)
 stack(a,b)
 unstack(a,b)
 putdown(a)
 pickup(b)
 stack(b,c)
 pickup(a)
 stack(a,b)
State-Space Planning

- STRIPS searches thru a space of situations (where you are, what you have, etc.)
- Find plan by searching situations to reach goal
- **Progression planner**: searches forward
 - From initial state to goal state
- **Regression planner**: searches backward from goal
 - Works iff operators have enough information to go both ways
 - Ideally leads to reduced branching: planner is only considering things that are relevant to the goal
Planning Heuristics

- Need an **admissible** heuristic to apply to planning states
 - Estimate of the distance (number of actions) to the goal

- Planning typically uses **relaxation** to create heuristics
 - Ignore all or some selected preconditions
 - Ignore delete lists: Movement towards goal is never undone
 - Use state abstraction (group together “similar” states and treat them as though they are identical) – e.g., ignore fluents*
 - Assume subgoal independence (use max cost; or, if subgoals actually are independent, sum the costs)
 - Use pattern databases to store exact solution costs of recurring subproblems

* an aspect of the world that changes - R&N 266
Plan-Space Planning

• Alternative: search through space of plans, not situations

• Start from a partial plan; expand and refine until a complete plan that solves the problem is generated

• Refinement operators add constraints to the partial plan and modification operators for other changes

• We can still use STRIPS-style operators:

 \[
 \text{Op(ACTION: PutOnRightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)}
 \]

 \[
 \text{Op(ACTION: PutOnRightSock, EFFECT: RightSockOn)}
 \]

 \[
 \text{Op(ACTION: PutOnLeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)}
 \]

 \[
 \text{Op(ACTION: PutOnLeftSock, EFFECT: LeftSockOn)}
 \]
Partial-Order Planning
Partial-Order Planning

• The big idea: Don’t specify the order of steps if you don’t have to.

 \[... \rightarrow \text{PutOnRightSock} \rightarrow \text{PutOnLeftSock} \rightarrow ... \]

 vs.

 \[... \rightarrow \text{PutOnLeftSock} \rightarrow \text{PutOnRightSock} \rightarrow ... \]

• Doesn’t matter, but a regular planner has to consider and specify all the options.
A simple graphical notation

(a) Start
 Initial State
 Goal State
 Finish

(b) Start
 LeftShoeOn RightShoeOn
 Finish
Partial-Order Planning

- A **linear planner** builds a plan as a **totally ordered sequence** of plan steps.

- A **non-linear planner (aka partial-order planner)** builds up a plan as a set of steps with some temporal constraints:
 - E.g., S1 < S2 (step S1 must come before S2)

- Partially ordered plan (POP) **refined** by either:
 - adding a new **plan step**, or
 - adding a new **constraint** to the steps already in the plan.

- A POP can be linearized by topological sorting – R&N 223
Linear vs. POP: Shoes

Do these sequences in any order.
Some example domains

• We’ll use some simple problems to illustrate planning problems and algorithms

• Putting on your socks and shoes in the morning
 • Actions like put-on-left-sock, put-on-right-shoe

• Planning a shopping trip involving buying several kinds of items
 • Actions like go(X), buy(Y)
The Initial Plan

Every plan starts the same way

S1: Start

Initial State

Goal State

S2: Finish
Least Commitment

• Non-linear planners embody the principle of least commitment
 • Only choose actions, orderings and variable bindings absolutely necessary, postponing other decisions
 • Avoid early commitment to decisions that don’t really matter

• Linear planners always choose to add a plan step in a particular place in the sequence

• Non-linear planners choose to add a step and possibly some temporal constraints
Non-Linear Plan Components

1) A set of **steps** \{S_1, S_2, S_3, S_4…\}
 - Each step has an **operator description**, **preconditions** and **post-conditions**
 - **ACTION**: LeftShoe, **PRECOND**: LeftSockOn, **EFFECT**: LeftShoeOn

2) A set of **causal links** \{ … (S_i,C,S_j) … \}
 - (One) goal of step S_i is to achieve precondition C of step S_j
 - \langle PutOnLeftShoe, LeftShoeOn, Finish \rangle
 - This says: No action that undoes LeftShoeOn is allowed to happen after PutOnLeftShoe and before Finish. Any action that undoes LeftShoeOn must either be before PutOnLeftShoe or after Finish.

3) A set of **ordering constraints** \{ … S_i<S_j … \}
 - If step S_i must come before step S_j
 - PutOnSock < Finish
A non-linear plan consists of

1. A set of steps \{S_1, S_2, S_3, S_4\ldots\}
2. A set of causal links \{ \ldots (S_i,C,S_j) \ldots \}
3. A set of ordering constraints \{ \ldots S_i<S_j \ldots \}

A non-linear plan is complete iff

- Every step mentioned in (2) and (3) is in (1)
- If \(S_j\) has prerequisite \(C\), then there exists a causal link in (2) of the form \((S_i,C,S_j)\) for some \(S_i\)
- If \((S_i,C,S_j)\) is in (2) and step \(S_k\) is in (1), and \(S_k\) threatens \((S_i,C,S_j)\) (makes \(C\) false), then (3) contains either \(S_k<S_i\) or \(S_j<S_k\)
Trivial Example

Operators:

Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)
Op(ACTION: RightSock, EFFECT: RightSockOn)
Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)
Op(ACTION: LeftSock, EFFECT: leftSockOn)

Steps:
{S1:[Op(Action:Start)],
S2:[Op(Action:Finish,
 Pre: RightShoeOn^LeftShoeOn)]}

Links: {}

Orderings: {S1<S2}
Solution

Start

Left Sock → Left Shoe

Right Sock → Right Shoe

Finish
POP Constraints and Search Heuristics

- Only add steps that reach a not-yet-achieved precondition
- Use a least-commitment approach:
 - Don’t order steps unless they need to be ordered
- Honor causal links $S_1 \rightarrow S_2$ that protect a condition c:
 - Never add an intervening step S_3 that violates c
 - If a parallel action threatens c (i.e., has the effect of negating or clobbering c), resolve that threat by adding ordering links:
 - Order S_3 before S_1 (demotion)
 - Order S_3 after S_2 (promotion)
function POP(initial, goal, operators) returns plan

plan ← MAKE-MINIMAL-PLAN(initial, goal)
loop do
 if SOLUTION?(plan) then return plan
 S_{new}, c ← SELECT-SUBGOAL(plan)
 CHOOSE-OPERATOR(plan, operators, S_{new}, c)
 RESOLVE-THREATS(plan)
end

function SELECT-SUBGOAL(plan) returns S_{new}, c

pick a plan step S_{new} from STEPS(plan)
 with a precondition c that has not been achieved
return S_{new}, c

procedure CHOOSE-OPERATOR(plan, operators, S_{new}, c)

choose a step S_{new} from operators or STEPS(plan) that has c as an effect
if there is no such step then fail
add the causal link $S_{new} \rightarrow S_{new}$ to LINKS(plan)
add the ordering constraint $S_{new} \prec S_{new}$ to ORDERINGS(plan)
if S_{new} is a newly added step from operators then
 add S_{new} to STEPS(plan)
 add $S_{new} \prec S_{new} \prec \text{Finish}$ to ORDERINGS(plan)

procedure RESOLVE-THREATS(plan)

for each S_{threat} that threatens a link $S_i \rightarrowrightarrow S_j$ in LINKS(plan) do
 choose either
 Promotion: Add $S_{threat} \prec S_i$ to ORDERINGS(plan)
 Demotion: Add $S_j \prec S_{threat}$ to ORDERINGS(plan)
if not CONSISTENT(plan) then fail
end
Partial-Order Planning Example

- **Initially:** at home; SM sells bananas; SM sells milk; HWS sells drills

- **Goal:** Be home with milk, bananas, and a drill

Diagram:

```
S1:Start
At(Home)  Sells(SM, bananas)  Sells(SM, Milk)  Sells(HWS, Drill)

Have(Drill)  Have(Milk)  Have(Banana)  At(Home)

S2:Finish
```
• Add three actions to achieve basic goals
• Use initial state to achieve the “Sells” preconditions
• Bold links are causal (protected), regular are just ordering constraints
Planning

At(x)

Go(HWS)

At(HWS), Sells(HWS,Drill)

Buy(Drill)

At(SM), Sells(SM,Milk)

Buy(Milk)

At(SM), Sells(SM,Bananas)

Buy(Bananas)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Finish
Resolving Threats

- The S_3 action **threatens** the c precondition of S_2 if S_3 neither precedes nor follows S_2 and S_3 has an effect that negates c.
- We don’t want to go to the HWS then leave before buying a drill…

Solution 1: Demotion

Solution 2: Promotion
Real-World Planning Domains

- Real-world domains are complex
- Don’t satisfy assumptions of STRIPS or partial-order planning methods
- Some of the characteristics we may need to deal with:
 - Modeling and reasoning about resources
 - Representing and reasoning about time
 - Planning at different levels of abstractions
 - Conditional outcomes of actions
 - Uncertain outcomes of actions
 - Exogenous events
 - Incremental plan development
 - Dynamic real-time replanning

} Scheduling

} Planning under uncertainty

} HTN planning
Hierarchical Planning
Hierarchical Decomposition

- The big idea: **Plan over high-level actions (HLAs), then figure out the steps to accomplish those.**
- Reduces complexity of planning space
 - Consider plan made of HLAs
 - **Then** make a plan for steps within each
 - Don’t consider silly orderings that violate high-level concepts
- Can nest more than one level
Hierarchical Decomposition: Example

• If we want to go to Hawaii (and we do)
 • Operators, unordered (because we haven’t planned yet):
 DriveToAirport, TaxiToHotel, PutClothesInSuitcase, BuySunscreen,
 BoardPlane, BuySwimsuit, FindPassport, PutPassportInCarryon,
 DisembarkFromPlane, BookHotel, …

• High-Level Actions (HLAs): “Get to island” “Prepare for trip”
 • Order HLAs first: PrepareForTrip → GetToIsland
 • THEN order the subgoals within them
 • Don’t have to consider “disembark” ↔ “find passport” ordering

• Nest as as needed
 • PrepareForTrip can include ShopForTrip, which includes …
Hierarchical Decomposition

- Hierarchical decomposition, or hierarchical task network (HTN) planning, uses **abstract operators** to **incrementally** decompose a planning problem from a **high-level goal** statement to a **primitive plan network**

- **Primitive operators** represent actions that are **executable**, and can appear in the final plan

- **Non-primitive operators** represent **goals** (equivalently, **abstract actions**) that require further decomposition (or **operationalization**) to be executed

- There is no “right” set of primitive actions: One agent’s goals are another agent’s actions!
HTN Planning: Example
OPERATOR decompose
PURPOSE: Construction
CONSTRAINTS:
Length (Frame) <= Length (Foundation),
Strength (Foundation) > Wt(Frame) + Wt(Roof)
 + Wt(Walls) + Wt(Interior) + Wt(Contents)
PLOT: Build (Foundation)
 Build (Frame)
PARALLEL
 Build (Roof)
 Build (Walls)
END PARALLEL
Build (Interior)
HTN Operator Representation

• Russell & Norvig explicitly represent causal links
 • Can also be computed dynamically by using a model of preconditions and effects
 • Dynamically computing causal links means that actions from one operator can safely be interleaved with other operators, and subactions can safely be removed or replaced during plan repair

• R&N representation only includes variable bindings
 • Can actually introduce a wide array of variable constraints
Truth Criterion

- Determining whether a formula is true at a particular point in a partially ordered plan is, in the general case, NP-hard.
- Intuition: there are exponentially many ways to linearize a partially ordered plan.
- In the worst case, if there are N actions unordered with respect to each other, there are N! linearizations.
- Ensuring soundness of truth criterion requires checking the formula under all possible linearizations.
- Use heuristic methods instead to make planning feasible.
- Check later to be sure no constraints have been violated.
Truth Criterion in HTN Planners

- **Heuristic:**
 1. Prove that there exists *one* possible ordering of the actions that makes the formula true
 2. But don’t insert ordering links to enforce that order

- **Such a proof is efficient**
 - Suppose you have an action A1 with a precondition P
 - Find an action A2 that achieves P (A2 can be initial world state)
 - Make sure there is no action *necessarily* between A2 and A1 that negates P

- **Applying this heuristic for all preconditions in the plan can result in infeasible plans**
Increasing Expressivity

• Conditional effects
 • Instead of different operators for different conditions, use a single operator with conditional effects
 • Move (block1, from, to) and MoveToTable (block1, from) collapse into one Move (block1, from, to):
 • $\text{Op}(\text{ACTION: Move(block1, from, to), PRECOND: } \text{On (block1, from)} \land \text{Clear (block1)} \land \text{Clear (to)} \land \text{EFFECT: On (block1, to)} \land \text{Clear (from)} \land \neg \text{On(block1, from)} \land \neg \text{Clear(to) when to<>Table}}$
 • There’s a problem with this operator: can you spot it?

• Negated and disjunctive goals
• Universally quantified preconditions and effects
Reasoning About Resources

- What if I only have so much money for bananas and drills?
 - It suddenly matters that I don’t introduce, e.g., *BuyGrapes*
- Introduce numeric variables that can be used as *measures*
- These variables represent resource quantities, and change over the course of the plan
- Certain actions *produce* (increase the quantity of) resources
- Other actions *consume* (decrease the quantity of) resources
- More generally, may want different types of resources
 - Continuous vs. discrete
 - Sharable vs. nonsharable
 - Reusable vs. consumable vs. self-replenishing
Other Real-World Planning Issues

• Conditional planning
• Partial observability
• Information gathering actions
• Execution monitoring and replanning
• Continuous planning
• Multi-agent (cooperative or adversarial) planning
POP Summary

Advantages
- Partial order planning is **sound** and **complete**
- Typically produces **optimal** solutions (plan length)
- Least commitment may lead to shorter search times

Disadvantages
- Significantly more complex algorithms
- Hard to determine what is true in a state
- Larger search space, since concurrent actions are allowed
Planning Summary

• Planning representations
 • Situation calculus
 • STRIPS representation: Preconditions and effects

• Planning approaches
 • State-space search (STRIPS, forward chaining, …)
 • Plan-space search (partial-order planning, HTNs, …)
 • Constraint-based search (GraphPlan, SATplan, …)

• Search strategies
 • Forward planning
 • Goal regression
 • Backward planning
 • Least-commitment
 • Nonlinear planning