Today’s Class

- Machine learning
 - What is ML?
 - Inductive learning
 - Supervised
 - Unsupervised
 - Decision trees
 - Later: Bayesian learning, naïve Bayes, and BN learning

Why Learn?

- Discover previously-unknown new things or structure
 - Data mining, scientific discovery
- Fill in skeletal or incomplete domain knowledge
 - Large, complex AI systems
 - Cannot be completely derived by hand and
 - Require dynamic updating to incorporate new information
 - Learning new characteristics expands the domain or expertise and lessens the “brittleness” of the system
- Build agents that can adapt to users or other agents
- Understand and improve efficiency of human learning
 - Use to improve methods for teaching and tutoring people (e.g., better computer-aided instruction)

What is Learning?

- “Learning denotes changes in a system that ... enable a system to do the same task more efficiently the next time.” – Herbert Simon
- “Learning is constructing or modifying representations of what is being experienced.” – Ryszard Michalski
- “Learning is making useful changes in our minds.” – Marvin Minsky

Pre-Reading Quiz

- What’s supervised learning?
 - What’s classification? What’s regression?
 - What’s a hypothesis? What’s a hypothesis space?
 - What are the training set and test set?
 - What is Ockham’s razor?
- What’s unsupervised learning?

Bookkeeping (Lots)

- Schedule mostly finalized
- HW4 due 11/8 @ 11:59
- No HW6
- Final date and time posted
- Full project description posted

Teams	now	Link on Plazza
Project Design | 11/5 | |
HW 4 | 11/8 | |
Phase I | 11/15 | |
HW 5 | 11/20 | 11:59 pm
Phase II | 11/29 | |
Final Writeup | 12/11 | |
Final Exam | 12/19 | 1:00-3:00
Some Terminology

The Big Idea: given some data, you learn a model of how the world works that lets you predict new data.

- **Training Set**: Data from which you learn initially.
- **Model**: What you learn. A “model” of how inputs are associated with outputs.
- **Test set**: New data you test your model against.
- **Corpus**: A body of data. (pl.: corpora)
- **Representation**: The computational expression of data

Major Paradigms of Machine Learning

- **Rote learning**: 1:1 mapping from inputs to stored representation
 - You’ve seen a problem before
 - Learning by memorization
 - Association-based storage and retrieval
- **Induction**: Specific examples \rightarrow general conclusions
- **Clustering**: Unsupervised grouping of data

The Classification Problem

- Extrapolate from examples to make accurate predictions about future data points
 - Examples are called training data
- Predict into classes, based on attributes (“features”)
 - Example: it has tomato sauce, cheese, and no bread. Is it pizza?
 - Example: does this image contain a cat?

A General Model of Learning Agents

Major Paradigms of Machine Learning

- **Analogy**: Model is correspondence between two different representations
- **Discovery**: Unsupervised, specific goal not given
- **Genetic algorithms**: “Evolutionary” search techniques
 - Based on an analogy to “survival of the fittest”
 - Surprisingly hard to get right/working
- **Reinforcement**: Feedback (positive or negative reward) given at the end of a sequence of steps

Supervised vs. Unsupervised

- **Goal**: Learn an unknown function $f(X) = Y$, where
 - X is an input example
 - Y is the desired output. (f is the...?)
- **Supervised learning**: given a training set of (X, Y) pairs by a “teacher”

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>bread</td>
<td>cheese</td>
</tr>
<tr>
<td>\sim bread</td>
<td>\sim cheese</td>
</tr>
<tr>
<td>bread</td>
<td>cheese</td>
</tr>
<tr>
<td>lots more rows...</td>
<td></td>
</tr>
</tbody>
</table>

“class labels” provided
Supervised vs. Unsupervised

- **Goal:** Learn an unknown function \(f(X) = Y \), where
 - \(X \) is an input example
 - \(Y \) is the desired output. (\(f \) is the...?)
- **Unsupervised learning:** only given \(Xs \) and some (eventual) feedback

<table>
<thead>
<tr>
<th>(X)</th>
<th>bread</th>
<th>cheese</th>
<th>tomato sauce</th>
</tr>
</thead>
<tbody>
<tr>
<td>~bread</td>
<td>~cheese</td>
<td>tomato sauce</td>
<td></td>
</tr>
<tr>
<td>bread</td>
<td>cheese</td>
<td>~tomato sauce</td>
<td></td>
</tr>
<tr>
<td>lets more rows...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Concept Learning

- **Concept learning or classification** (aka "induction")
 - Given a set of examples of some concept/class/category:
 1. Determine if a given example is an instance of the concept (class member) or not
 2. If it is: **positive example**
 3. If it is not: **negative example**
 4. Or we can make a probabilistic prediction (e.g., using a Bayes net)

Supervised Concept Learning

- Given a training set of positive and negative examples of a concept
- Construct a description (model) that will accurately classify whether future examples are positive or negative
- I.e., learn estimate of function \(f \) given a training set: \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\)
 where each \(y_i \) is either + (positive) or - (negative), or a probability distribution over +/-.

Inductive Learning Framework

- **Instance space, \(I \)**, is set of all possible examples
 - Defines the **language** for the training and test instances
 - Usually each instance \(i \in I \) is a **feature vector**
 - Features are also sometimes called **attributes or variables**
 \[I: V_1 \times V_2 \times \ldots \times V_k, \quad i = (v_{i1}, v_{i2}, \ldots, v_{ik}) \]
- **Class variable, \(C \)** gives an instance's class (to be predicted)

Inductive Learning as Search

- C gives an instance's class
- Model space \(M \) defines the possible **classifiers**
 - \(M: I \to C, \ M = \{m_1, \ldots, m_n\} \) (possibly infinite)
 - Model space is sometimes defined using same features as instance space (not always)
- Training data lets us search for a good (consistent, complete, simple) hypothesis in the model space
- The learned model is a classifier
Model Spaces (1)

- Decision trees
 - Partition the instance space I into axis-parallel regions
 - Labeled with class value
- Nearest-neighbor classifiers
 - Partition the instance space I into regions defined by centroid instances (or cluster of k instances)
- Bayesian networks
 - Probabilistic dependencies of class on attributes
 - Naive Bayes: special case of BNs where class \rightarrow each attribute

Model Spaces (2)

- Neural networks
 - Nonlinear feed-forward functions of attribute values
- Support vector machines
 - Find a separating plane in a high-dimensional feature space
- Associative rules (feature values \rightarrow class)
- First-order logical rules
Decision Trees

- **Goal**: Build a tree to classify examples as positive or negative instances of a concept using supervised learning from a training set.
- A decision tree is a tree where:
 - Each **non-leaf** node is an attribute (feature).
 - Each **leaf** node is a classification (+ or -).
 - Positive and negative data points.
 - Each arc is one possible value of the attribute at the node from which the arc is directed.
- Generalization: allow for >2 classes
 - e.g., {sell, hold, buy}.

Learning Decision Trees

- Each **non-leaf** node is associated with an attribute (feature).
- Each **leaf** node is associated with a classification (+ or -).
- Each arc is associated with one possible value of the attribute at the node from which the arc is directed.

Will You Buy My Product?

http://www.edureka.co/blog/decision-trees/

Decision Tree-Induced Partition – Example

Inductive Learning and Bias

- We want to learn a function $f(x) = y$
 - We are given sample (x, y) pairs, as in figure (a).
 - Several hypotheses for this function: (b), (c) and (d) (and others).
- A preference here reveals our learning technique’s **bias**
 - Prefer piece-wise functions? (b).
 - Prefer a smooth function? (c).
 - Prefer a simple function and treat outliers as noise? (d).
Preference Bias: Ockham’s Razor

- A.k.a. Occam’s Razor, Law of Economy, or Law of Parsimony
- Stated by William of Ockham (1285-1347/49):
 - “Non sunt multiplicanda entia praeter necessitatem”
 - “Entities are not to be multiplied beyond necessity”
- “The simplest consistent explanation is the best.”
- Smallest decision tree that correctly classifies all training examples
- Finding the provably smallest decision tree is NP-hard!
- So, instead of constructing the absolute smallest tree consistent with the training examples, construct one that is “pretty small”

R&N’s Restaurant Domain

- Model decision a patron makes when deciding whether to wait for a table
 - Two classes (outcomes): wait, leave
- Training set of 12 examples
 - ~ 7000 possible cases

A Training Set

<table>
<thead>
<tr>
<th>Datum</th>
<th>Attribute</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt</td>
<td>Bar</td>
<td>Fri</td>
</tr>
<tr>
<td>X1</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>X3</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>X4</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>X1</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>X4</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>X5</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>X2</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>X3</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>X1</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>X4</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>X5</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>X2</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>X3</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>X1</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>X4</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>X5</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>X2</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>X3</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>X1</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>X4</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>X5</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>X2</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>X3</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>X1</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>X4</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>X5</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>X2</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>X3</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>X1</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>X4</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>X5</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>X2</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>X3</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Preference Bias: Ockham’s Razor

- A.k.a. Occam’s Razor, Law of Economy, or Law of Parsimony
- Stated by William of Ockham (1285-1347/49):
 - “Non sunt multiplicanda entia praeter necessitatem”
 - “Entities are not to be multiplied beyond necessity”
- “The simplest consistent explanation is the best.”
- Smallest decision tree that correctly classifies all training examples
- Finding the provably smallest decision tree is NP-hard!
- So, instead of constructing the absolute smallest tree consistent with the training examples, construct one that is “pretty small”

ID3/C4.5

- A greedy algorithm for decision tree construction
 - Ross Quinlan, 1987
- Construct decision tree top-down by recursively selecting the “best attribute” to use at current node
 1. Select attribute for current node
 2. Generate child nodes (one for each possible value of attribute)
 3. Partition training data using attribute values
 4. Assign subsets of examples to the appropriate child node
 5. Repeat for each child node until all examples associated with a node are either all positive or all negative

Bird or Mammal?

<table>
<thead>
<tr>
<th>Examples (training data)</th>
<th>Attribute</th>
<th>Number of Examples Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparrow</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Monkey</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Elephant</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Penguin</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Mouse</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Fish</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Sparrow, monkey, elephant</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Sparrow, monkey, elephant</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

Test
mouse: <B:N, F:N, Fe:N>
Choosing the Best Attribute

- **Key problem:** what attribute to split on?
- Some possibilities are:
 - Random: Select any attribute at random
 - Least-Values: Choose attribute with smallest number of values
 - Most-Values: Choose attribute with largest number of values
 - Max-Gain: Choose attribute that has the largest expected information gain—the attribute that will result in the smallest expected size of the subtrees rooted at its children
- ID3 uses Max-Gain to select the best attribute

Choosing an Attribute

- Idea: a good attribute splits the examples into subsets that are (ideally) “all positive” or “all negative”
- Which is better: *Patrons* or *Type*?
- **Why?**

Restaurant Example

- What do these approaches split restaurants on, given the data in the table?
 - Random: *Patrons* or *Type*
 - Least-values: *Patrons*
 - Most-values: *Type*
 - Max-gain: ???

<table>
<thead>
<tr>
<th>Restaurant</th>
<th>Empty</th>
<th>Some</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>French</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Italian</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Thai</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Burger</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

Splitting Examples by Testing Attributes

ID3-induced Decision Tree

Information Theory 101

- **Information:** the minimum number of bits needed to store or send some information
 - Wikipedia: “The measure of data, known as information entropy, is usually expressed by the average number of bits needed for storage or communication”
- **Intuition:** minimize effort to communicate/store
 - Common words (a, the, dog) are shorter than less common ones (parliamentarian, foreshadowing)
 - In Morse code, common (probable) letters have shorter encodings

Information Theory 102

- Information is measured in **bits**.
- Information in a message depends on its probability.
- Given n equally probable possible messages, what is probability p_i of each one?
 $$P = \frac{1}{n}$$
- Information conveyed by a message is $\log_2(n) = -\log_2(p)$
- Example: with 16 possible messages, $\log_2(16) = 4$, and we need 4 bits to identify/send each message

Information Theory 102.b

- Information conveyed by a message is $\log_2(n) = -\log_2(p)$
- Given a probability distribution for n messages:
 $$P = (p_1, p_2, \ldots, p_n)$$
- The information conveyed by that distribution is:
 $$I(P) = -(p_1 \cdot \log_2(p_1) + p_2 \cdot \log_2(p_2) + \ldots + p_n \cdot \log_2(p_n))$$
- This is the **entropy** of P.

Information Theory 103

- Entropy: **average** number of bits (per message) needed to represent a stream of messages
 $$I(P) = -(p_1 \cdot \log_2(p_1) + p_2 \cdot \log_2(p_2) + \ldots + p_n \cdot \log_2(p_n))$$
- Examples:
 - $P = (0.5, 0.5)$: $I(P) = 1$ → entropy of a fair coin flip
 - $P = (0.67, 0.33)$: $I(P) = 0.92$
 - $P = (0.99, 0.01)$: $I(P) = 0.08$
 - $P = (1, 0)$: $I(P) = 0$
- As the distribution becomes more skewed, the amount of information decreases. Why?
 - Because I can just predict the most likely element, and usually be right

Entropy as Measure of Homogeneity of Examples

- Entropy can be used to characterize the (im)purity of an arbitrary collection of examples
- Low entropy implies high homogeneity
 - Given a collection \mathcal{S} (like the table of 12 examples for the restaurant domain), containing positive and negative examples of some target concept, the entropy of \mathcal{S} relative to its Boolean classification is:
 $$I(\mathcal{S}) = -(p_+ \cdot \log_2(p_+) + p_- \cdot \log_2(p_-))$$
- Example:
 - Entropy([6+, 6-]) = 1 → entropy of the restaurant dataset
 - Entropy([9+, 5-]) = 0.940

Information Gain

- **Information gain**: how much entropy decreases (homogeneity increases) when a dataset is split on an attribute.
 - High homogeneity → high likelihood samples will have the same class
 - Constructing a decision tree is all about finding attribute that returns the highest information gain (i.e., the most homogeneous branches)

Information Gain, cont.

- Use to rank attributes and build DT (decision tree)!
- Choose nodes using attribute with **greatest gain**
 - \rightarrow means least information remaining after split
 - I.e., subsets are all as skewed as possible
- Why?
 - Create small decision trees: predictions can be made with few attribute tests
 - Try to find a minimal process that still captures the data (Occam’s Razor)
How Well Does it Work?

At least as accurate as human experts (sometimes)
- Diagnosing breast cancer: humans correct 65% of the time; decision tree classified 72% correct
- BP designed a decision tree for gas-oil separation for offshore oil platforms; replaced an earlier rule-based expert system
- Cessna designed an airplane flight controller using 90,000 examples and 20 attributes per example
- SKICAT (Sky Image Cataloging and Analysis Tool) used a DT to classify sky objects an order of magnitude fainter than was previously possible, with an accuracy of over 90%.

Extensions of the Decision Tree Learning Algorithm

- Using gain ratios
- Real-valued data
- Noisy data and overfitting
- Generation of rules
- Setting parameters
- Cross-validation for experimental validation of performance

C4.5 is a (more applicable) extension of ID3 that accounts for real-world problems: unavailable values, continuous attributes, pruning decision trees, rule derivation, …

Real-Valued Data

- Select a set of thresholds defining intervals
- Each interval becomes a discrete value of the attribute
- Use some simple heuristics…
 - always divide into quartiles
- Use domain knowledge…
 - divide age into infant (0-2), toddler (3-5), school-aged (5-8)
- Or treat this as another learning problem
 - Try a range of ways to discretize the continuous variable and see which yield "better results" w.r.t. some metric
 - E.g., try midpoint between every pair of values

Converting Decision Trees to Rules

- 1 rule for each path in tree (from root to a leaf)
- Left-hand side: labels of nodes and arcs
 - Pa.=None → Don’t wait
 - Pa.=Some → Wait
 - Pa.=F ∧ Hu.=No → Don’t wait
 - etc...
- Resulting rules can be simplified and reasoned over

Simplifying Rules

- Let LHS be the left hand side of a rule
- Let LHS’ be obtained from LHS by eliminating some conditions
- We can certainly replace LHS by LHS’ in this rule if the subsets of the training set that satisfy respectively LHS and LHS’ are equal
- A rule may be eliminated by using metaconditions such as “if no other rule applies”

Noisy Data

- Many kinds of “noise” can occur in the examples:
 - Two examples have same attribute/value pairs, but different classifications
 - Some values of attributes are incorrect because of errors in data acquisition or preprocessing phase
 - The classification is wrong (e.g., + instead of -) because of some error
 - Attributes irrelevant to the decision-making process
 - Color of a die is irrelevant to its outcome
 - Can still be in training data, can be chosen as an attribute
Overfitting

- Sometimes, model fits training data well but doesn't do well on test data
- Can be it “overfit” to the training data
 - Model is too specific to training data
 - Doesn’t generalize to new information well
- Learned model: $[YAY \Rightarrow B \lor YAN \Rightarrow M \lor \ldots]$

Noisy Data and Overfitting

- Irrelevant attributes \Rightarrow overfitting
- If hypothesis space has many dimensions (many attributes), may find meaningless regularity
 - Ex: Name starts with [A-M] \Rightarrow Mammal
- One fix: prune lower nodes in the decision tree
 - Ex: if Gain of best attribute at a node is below a threshold, stop; make a leaf rather than generating children

Measuring Model Quality

- How good is a model?
 - Predictive accuracy on test data
 - False positives / false negatives for a given cutoff threshold
 - Loss function (accounts for cost of different types of errors)
 - Area under the (ROC) curve
 - Minimizing loss can lead to problems with overfitting
- Overfitting: coming up with a model that is TOO specific to your training data

Measuring Model Quality

- Training error
 - Train on all data; measure error on all data
 - Subject to overfitting (of course we’ll make good predictions on the data on which we trained!)
- Regularization
 - Attempt to avoid overfitting
 - Explicitly minimize the complexity of the function while minimizing loss
 - Tradeoff is modeled with a regularization parameter

Cross-Validation

- Holdout cross-validation:
 - Divide data into training set and test set
 - Train on training set; measure error on test set
 - Better than training error, since we are measuring generalization to new data
 - To get a good estimate, we need a reasonably large test set
 - But this gives less data to train on, reducing our model quality!

Cross-Validation, cont.

- k-fold cross-validation:
 - Divide data into k folds
 - Train on k-1 folds, use the kth fold to measure error
 - Repeat k times; use average error to measure generalization accuracy
 - Statistically valid and gives good accuracy estimates
- Leave-one-out cross-validation (LOOCV)
 - k-fold cross-validation where $k=N$ (test data = 1 instance!)
 - Quite accurate, but also quite expensive, since it requires building N models
Summary: Decision Tree Learning

- One of the most widely used learning methods in practice
- Can out-perform human experts in many problems
- Strengths include
 - Fast
 - Simple to implement
 - Can convert result to a set of easily interpretable rules
 - Empirically valid in many commercial products
 - Handles noisy data
- Weaknesses:
 - Univariate splits/partitioning using only one attribute at a time (limits types of possible trees)
 - Large decision trees may be hard to understand
 - Requires fixed-length feature vectors
 - Non-incremental (i.e., batch method)