Memory Coherence

• In a DSM with replication, what is the semantics of memory access?
 – Need to define a memory consistency model
 – Strict Consistency – read returns latest write
 – Sequential Consistency – the result of any execution of operations of all processors is the same as if they were executed sequentially, and operations of a particular process happen in sequence
 – General Consistency – All copies of the memory location eventually contain the same data when all writes have completed
– Processor Consistency – writes issued by processors occur in order, but not across processors. So simultaneous reads on different processors can lead to different values.

– Weak Consistency – Synchronization access are sequentially consistent. Regular data accesses and synchs aren’t mixed. Synch. Up to the programmer.

– Release Consistency – Acquire/manipulate/release paradigm. Can mix in some combinations. Synchs are processor consistent.
Coherence Protocols

- Write Invalidate or Write Update
- Coherence in PLUS system
 - Page is the unit of replication, word is unit of consistency
 - One replica is the “master”. Each replica points to the master and to the next replica. This forms a distributed copy list.
 - On read fault for remote memory, MCM sends message to remote processor and receives data
 - On write, the operation is first performed at master, and then propagated to replicas.
 - Writer is not blocked unless it wants to read from that location.
 - Guarantees in process ordering, but not across processors.
• Clouds system uses synchronization locks for memory coherence. Locking process gets the data segment. Reverts back to owner upon release.

• Application Specific hints
 – Write once objects
 – Private objects
 – Write Many (use delayed updates, weak consistency)
 – Result Objects are a subset of write many, which are read after writes.
 – Synchronization Objects – proxies used for lock management.
 – Migratory objects – accessed in phases (critical section)
 – Producer consumer objects – eager movement.
 – Read Mostly objects – broadcast updates
 – General Objects
• General Objects
 – Invalid
 – Unowned – have valid data and may be replicated. Need to take ownership before updating
 – Owned exclusively -- has valid data and updatable locally. Must be shared if requested.
 – Owned non-exclusively – has valid data, but need to invalidate others before updates.
 – Read operations can be *shared* or *for ownership*.
Design Issues

• Granularity
 – Multiple of underlying page?
 – Tradeoff between size and contention
 – Combination by separating coherence from replication
 – Adaptivity?

• Replacement
 – Can’t use things like LRU directly because of sharing modes
 – Avoid disk swapping by memory reservation.
IVY Case Study

- Strict Consistency using multiple reader, single writer semantics and write invalidation
- Read Fault: Contact page owner. Owner adds you to its copyset and sends replica.
- Write Fault: Contact owner. Owner sends page and copysets, and invalidates its own entry. You store the page and send invalidation message to all in copyset.
- Manager can be centralized, distributed or dynamic distributed