Several observations can be made from the analysis:

- PMOS was widened to match resistance of NMOS by $3 - 3.5$.
 This was done to provide symmetrical H-to-L and L-to-H propagation delays.

 This also triples the PMOS gate and diffusion capacitances.

 It is possible to speed-up the inverter by reducing the width of the PMOS device (at
 the expense of symmetry and noise margins)!

 Widening PMOS reduces $t_{p_{LH}}$ by increasing the charging current, but it also degrades
 the $t_{p_{HL}}$ by causing a larger parasitic capacitance.

 This implies that there is an optimal ratio that balances the two contradictory effects.
Propagation Delay

Consider two identically sized CMOS inverters. The load cap of the first gate is approximated by:

\[
C_L = (C_{dp1} + C_{dn1}) + (C_{gp2} + C_{gn2}) + C_W
\]

Now assume PMOS devices are made \(b\) times larger than NMOS.

\[
C_{dp1} = \beta C_{dn1} \quad \& \quad C_{gp1} = \beta C_{gn1}
\]

\[
C_L = (1 + \beta)(C_{dn1} + C_{gn2}) + C_W
\]

Returning to:

\[
\begin{align*}
 t_p &= \frac{t_{pHL} + t_{pLH}}{2} = 0.69C_L \left(R_{eqn} + \frac{R_{eqp}}{\beta} \right) \\
 t_p &= \frac{0.69}{2} \left((1 + \beta)(C_{dn1} + C_{gn2}) + C_W \right) \left(R_{eqn} + \frac{R_{eqp}}{\beta} \right) \\
 t_p &= 0.345((1 + \beta)(C_{dn1} + C_{gn2}) + C_W)R_{eqn} \left(1 + \frac{r}{\beta} \right)
\end{align*}
\]
CMOS Inverter

Propagation Delay

\(r \) is equal to the resistance ratio of identically sized PMOS and NMOS transistors: \(\frac{R_{eqp}}{R_{eqn}} \).

The optimal value of \(b \) can be found by setting

\[
\frac{\partial t_p}{\partial \beta} = 0 \quad \Rightarrow \quad \beta_{opt} = \sqrt{r \left(1 + \frac{C_W}{C_{dn1} + C_{gn1}} \right)}
\]

When wiring capacitance is negligible, \(\beta_{opt} \) equals the \(\sqrt{r} \), vs. \(r \) normally used in the non-cascaded case.

If wiring cap dominates, larger values of \(b \) should be used.

This analysis indicates that smaller device sizes (and smaller area) yield a **faster** design at the expense of symmetry and noise margins.

Example in text gives \(\beta \) of 2.4 (=31 kΩ/13 kΩ) for symmetrical response. \(\beta_{opt} \) is then 1.6 -- SPICE sims gives optimal value of \(\beta = 1.9 \).
Sizing Inverters for Performance

Assume a symmetrical inverter (rise and fall times of inverter are identical).

Load capacitance can be divided into *intrinsic* or *self-loading* and *extrinsic* components:

\[C_L = C_{int} + C_{ext} \]

Assuming \(R_{eq} \) stands for the equivalent resistance of the gate, then propagation delay is:

\[
t_p = 0.69 R_{eq} (C_{int} + C_{ext}) \\
= 0.69 R_{eq} C_{int} \left(1 + \frac{C_{ext}}{C_{int}}\right) \\
= t_{p0} \left(1 + \frac{C_{ext}}{C_{int}}\right)
\]

Intrinsic or unloaded delay

So how does transistor sizing impact the performance of the gate?
Sizing Inverters for Performance

C_{int} consists of the diffusion and Miller caps, both of which are proportional to the width of the transistors.

Let's use a minimum sized inverter as a reference gate, then:

$$C_{int} = SC_{iref} \quad \& \quad R_{eq} = \frac{R_{ref}}{S}$$

where S is the sizing factor.

Re-writing previous expression:

$$t_p = 0.69\left(\frac{R_{ref}}{S}\right)(SC_{iref})\left(1 + \frac{C_{ext}}{SC_{iref}}\right)$$

$$= 0.69R_{ref}C_{iref}\left(1 + \frac{C_{ext}}{SC_{iref}}\right)$$
Sizing Inverters for Performance

Conclusions

- Intrinsic delay of the inverter t_{p0} is *independent* of the sizing of the gate (determined by technology and layout only).

 When there is no load, the increase in drive of the gate is **totally offset** by increased cap.

- Making S infinitely large yields the **max** performance, **eliminates** the impact of any external load and reduces the delay to the intrinsic one.

 Bear in mind that any size greater than (C_{ext}/C_{int}) produces similar results while increasing the silicon area -- no win beyond this size.

Bear in mind that although sizing up an inverter reduces its delay, it also **increases** its input capacitance.

So the more relevant problem is determining the optimum size of a gate when embedded in a *real environment.*
Sizing Inverters for Performance

Consider a chain of inverters as the first case.

To determine input loading effect, we need to determine the relationship between the input gate capacitance, \(C_g \) and the intrinsic output capacitance.

Both are proportional to gate sizing, so the following is true:

\[
C_{\text{int}} = \gamma C_g
\]

The gamma factor \(\gamma \) is only a function of technology and is close to 1 for most processes.

Substituting:

\[
t_p = t_{p0} \left(1 + \frac{C_{\text{ext}}}{\gamma C_g}\right) = t_{p0}(1 + f/\gamma)
\]

This shows the delay of an inverter is only a function of the ratio between its external load cap and its input cap, and is called effective fan-out \(f \).
Sizing a Chain of Inverters

Goal is to minimize delay through the following inverter chain:

![Inverter Chain Diagram]

- In
- C\text{g}_1
- input cap of first inverter, min sized gate
- Some large load we need to drive
- N
- C\text{L}

Delay for j-th inverter stage (ignoring wire cap):

\[t_{p,j} = t_{p0} \left(1 + \frac{C_{g,j+1}}{\gamma C_{g,j}} \right) = t_{p0} \left(1 + f_j / \gamma \right) \]

The total delay of the chain is then:

\[t_{p,j} = \sum_{j=1}^{N} t_{p,j} = t_{p0} \sum_{j=1}^{N} \left(1 + \frac{C_{g,j+1}}{\gamma C_{g,j}} \right) \quad \text{with} \quad C_{g,N+1} = C\text{L} \]

And we need to solve for N-1 unknowns C\text{g}_2, C\text{g}_3, C\text{g}_N.
Sizing a Chain of Inverters

Solution giving the optimal size of each inverter (that minimizes delay) is the geometric mean of each of the inverter's neighbors:

\[
C_{g,j} = \sqrt[2]{C_{g,j-1} \cdot C_{g,j+1}}
\]

So each inverter is sized up by the same factor \(f\) (and has the same delay).

Given \(C_{g,1}\) and \(C_L\), the sizing factor is given as:

\[
f = \sqrt[2]{\frac{C_L}{C_{g,1}}} = \sqrt[2]{F}
\]

where \(F\) represents the overall effective fan-out of the circuit and equals \(C_L/C_{g,1}\).

The minimum delay through the chain is:

\[
t_p = Nt_{p0}(1 + (\sqrt[2]{F})/\gamma)
\]

First component is intrinsic delay of the stages while second is effective fan-out of each stage.
Sizing a Chain of Inverters

The relationship between t_p and F is a strong function of the number of stages.

The important question now is how to choose the **number of stages** so that the delay is minimized for a given value of $F \left(\frac{C_L}{C_{g,1}} \right)$.

If too many, *intrinsic delay* dominates, if too few, *effective fan-out* dominates.

Differentiating and setting to zero yields:

$$\gamma + N\sqrt{F} - \frac{N\sqrt{F} \ln(F)}{N} = 0 \quad \text{or}$$

$$f = e^{(1 + \gamma/f)}$$

Under the condition that γ is 0 (self-loading is ignored, load cap only consists of the fan-out), the optimal number is:

$$N = \ln(F) \quad \text{effective fan-out is set to } f = e = 2.71828$$
Sizing a Chain of Inverters

This indicates that the optimal buffer design scales consecutive stages in an exponential fashion (*exponential horn*).

The solution when *self-loading* is included can only be computed numerically. For a typical case with $\gamma = 1$, the optimum tapering factor is close to 3.6.

Right plot shows *normalized delay* (t_p/t_{popt}) as a function of fan-out f for $\gamma = 1$.
Sizing a Chain of Inverters

Here it is clear that choosing values for fan-out that are higher than the optimum does NOT effect the delay very much (and helps reduce area).

It is common to select an optimum fan-out of 4 (FO4).

Note that the use of too few stages \(f < f_{opt} \) has a significant impact on performance and should be avoided.

Rise-Fall Time of Input Signal

It is not realistic to assume that input signal changes abruptly and only one device is on.

Reality is that both are on for some portion of time and the total charging/discharging current is directed onto/off the load caps.
Rise-Fall Time of Input Signal

Propagation delay of a minimum sized inverter as a function of input signal slope (fan-out is a single gate), for $t_s > t_p$.

![Graph showing t_p increasing approximately linearly with increasing input slope.](image)

t_p increases approximately linearly with increasing input slope.

Text gives a more thorough analysis.

Key design challenge is to keep the *signal rise times* \leq the *gate propagation delay*, for speed and power consumption.
Wire Delay

We've ignored the wire delay so far, even though its influence can dominate the transient response.

Consider the following circuit:

![Circuit Diagram]

Here, inverter drives a single fan-out through a wire of length L.

Let the driver be represented by a single resistance R_{dr} (average of R_{eqn} and R_{eqp}), and C_{int} and C_{fan} are the intrinsic cap of the driver and input cap of the fan-out gate.

Elmore delay expression yields the propagation delay of the circuit as:

$$t_p = 0.69R_{dr}C_{int} + (0.69R_{dr} + 0.38R_w)C_w + 0.69(R_{dr} + R_w)C_{fan}$$
Rearranging yields:

\[t_p = 0.69 R_{dr} (C_{int} + C_{fan}) + 0.69 (R_{dr} c_w + r_w C_{fan}) L + 0.38 r_w c_w L^2 \]

The 0.38 factor accounts for the fact that the wire represents a distributed delay.

\(C_w \) and \(R_w \) stand for the total capacitance and resistance of the wire.

Here, the delay expression contains a component that is linear with the wire length, as well as a quadratic one.

The latter obviously becomes the dominant factor in the delay of longer wires.
Power Consumption

The almost ideal VTC of the CMOS inverter is not the main reason that high-complexity designs are implemented in static CMOS.

Rather, it's the almost zero power consumption in steady-state mode.

The reversed-bias diode current is, in general, very small.
Typical values are 0.1 to 0.5nA at room temperature.
For a device at 5V with 1 million devices, power consumption is 0.5mW.

A more serious source is the subthreshold current.
The closer V_T is to zero, the larger the leakage with $V_{GS} = 0V$.
This establishes a firm lower bound on V_T, which is $> 0.5V$ today.
Power Consumption

For both sources of leakage, the resulting static power dissipation is given by:

\[P_{\text{static}} = I_{\text{leakage}} V_{DD} \]

The junction leakage currents are caused by *thermally generated carriers*. Their value increases exponentially with increasing junction temperature.

For example, 85 degrees C (a common junction temperature) results in an increase by a factor of 60 over room temperature.

Dynamic power is much larger than static power and can be broken into 2 parts.

- *Load capacitance*, \(C_L \), power.
- Power consumed via *direct path currents* (crow-bar currents).
Power Consumption

C_L power (we derived this previously):

Charging C_L to V_{DD} draws $C_L \times V_{DD}^2$ energy from the power supply.

Half of this energy is stored on the cap ($C_L \times V_{DD}^2/2$) and later dissipated through the NMOS device.

So, an energy $= C_L \times V_{DD}^2$ is consumed for every L->H and H->L transition.

Therefore, for a clock frequency of f,

$$P_{dyn} = C_{eff} V_{DD}^2 f \quad \text{with} \quad C_{eff} = \alpha C_L$$

Technology advances decrease t_p and increase f and C_L (higher integration).

For example, at 30fF/gate at 100MHz and $V_{DD} = 5V$, 75µW is dissipated per gate.

With 200K gates and $\alpha = 20\%$, 3W are dissipated.

1W is consumed with 100 output pins at 20pF/pin and $f = 20$MHz.

One of the driving forces for lower supply voltages (quadratic effect).

For example, 5V -> 3V drops 4W to 1.44W (assuming the same f).
Power Consumption

Direct-path currents.

Zero rise/fall times is not a realistic assumption.

Using triangles and $V_{DD} \gg |V_T|$, the power consumed is

$$P_{dp} = \left(V_{DD} \frac{I_{peak} t_r}{2} + V_{DD} \frac{I_{peak} t_f}{2} \right) f = \frac{t_r + t_f}{2} V_{DD} I_{peak} f$$

Avoid large values for t_f and t_r to minimize.

Direct-path power is typically only about **20%** of the dynamic power.
Total power is then:

\[P_{\text{tot}} = P_{\text{dyn}} + P_{\text{dp}} + P_{\text{static}} = C_L V_{DD}^2 f + V_{DD}I_{\text{peak}} \left(\frac{t_r + t_f}{2} \right) f + V_{DD}I_{\text{leak}} \]

The **Power-Delay** product was also defined previously.

It is the energy consumed by the gate per switching event.

We've defined a switching event to consist of a 0 -> 1 and a 1 -> 0 event.

This results in a **PDP** of

\[\text{PDP} = C_L V_{DD}^2 \]

Under the condition that the static and direct-path currents are ignored.