Physical Representation

An abrupt junction between p and n materials creates a concentration gradient among the carriers.

Electrons **diffuse** from n to p while holes diffuse from p to n.

The diffusion leaves behind **bound charge** in the lattice.

The bound charge sets up an electric field that counteracts the diffusion.

Electrons **drift** from p to n while holes drift from n to p.

![Diode Diagram](image-url)
Diode Details

Charge Distribution, Electric Field and Electrostatic Potential

- **Charge Density**
- **Electric Field**
- **Potential**

Plate

p neutral region

- **Hole diffusion**
- **Electron diffusion**

- **Electron drift**
- **Hole drift**

- **p** region more heavily doped, \(N_A > N_D \)

Distance

Distance

Distance

Distance

\(\phi_0 \)

Charge

Electric Field

Potential

Note: The diagram illustrates the charge distribution, electric field, and electrostatic potential in a diode, showing the movement of electrons and holes under the influence of diffusion and drift forces. The region labeled as **p** is more heavily doped with a higher concentration of holes, while the **n** region is more heavily doped with a higher concentration of electrons.
Built-In Potential and I-V Characteristics

Build-in potential:

$$\phi_0 = \phi_T \ln \left[\frac{N_A N_D}{2 n_i^2} \right]$$

where

$$\phi_T = \frac{kT}{q} = 26\text{mV at 300K (Thermal V)}$$

$$n_i = 1.5 \times 10^{10} \text{ carriers/cm}^3$$

For example:

$$N_A = 10^{15} \text{ carriers/cm}^3$$

$$N_D = 10^{16} \text{ carriers/cm}^3$$

$$\phi_0 = 26 \ln \left[\frac{10^{15} 10^{16}}{2.25 \times 10^{20}} \right] = 638\text{mV}$$

Forward bias

Raising potential of the p w.r.t n causes current to flow from p to n.

Lowers potential barrier and diffusion dominates drift.

Minority carriers injected into neutral region and diffuse toward plates.

Recombine with majority carrier causing a net flow of current.
I-V Characteristics

Reverse bias

Raising potential of the *n* w.r.t *p* causes current to flow from *n* to *p*. Drift dominates diffusion.

However, current is small since the number of minority carriers (e.g., electrons in *p* neutral region) is small.

For forward bias, the current is **exponentially** related to applied bias.

Current increases by a factor of 10 for every 60mV (2.3\(\phi_T\)) of forward bias.
Static Behavior

Ideal diode equation:

$$ I_D = I_S \left(e^{\frac{V_D}{\phi T}} - 1 \right) $$

where I_S is a constant: saturation current.

With $V_D \ll 0$,

$$ I_D \approx -I_S = 10^{-17} \text{A/um}^2 \text{ (actual values are } 10^3 \text{ higher)}$$

Forward Bias: Physical basis for ideal equation:

![Minority carrier concentration diagram](image-url)
Static Behavior

Reverse Bias

Ideal diode equation predicts diode current approaches the saturation current as V_D gets much \textit{smaller} than the thermal voltage.

$$I_D \rightarrow -I_S \text{ for } |V_D| > \phi_T$$

Concentration of minority carriers at depletion-region approaches 0 under sufficient reverse bias.
Static Behavior

Simple models of the diode.

Left model based on ideal diode but is strongly non-linear and approximated by a simple model on the right.

\[I_D = I_S \left(e^{\frac{V_D}{\phi T}} - 1 \right) \]

First order approx.

For a fully conducting diode, voltage drop across diode is \(~0.7V\)

Example: Assume \(V_S = 3V \) and \(R_S = 10k\Omega \) and \(I_S = 0.5 \times 10^{-16} \).

Using non-linear model yields:

\(V_D = 0.757V \) and \(I_D = 0.224mA \)

Assuming \(V_D = 0.7V \) yields \(I_D = 0.23mA \)
Dynamic Behavior

Dynamic behavior determines the maximum operational frequency. It is dependent on how fast charge can be moved around.

Two capacitances

- Depletion and diffusion.

Depletion region and Junction capacitance:
Under the ideal model, the depletion region is void of mobile carriers. Its charge is determined by the immobile donor and acceptor ions.

Intuitively:

- Forward bias: Potential barrier is reduced which means that less space charge is needed to produce the potential difference. This corresponds to a reduced depletion-region width.

- Reverse bias: Potential barrier increased, increase in space charge, wider depletion width.
Dynamic Behavior

Expressions that convey this fact.

- **Depletion region charge** \((V_D)\) is positive for forward bias:

 \[
 Q_j = A_D \sqrt{\frac{2 \varepsilon_{si} q}{N_A + N_D}} \left(\phi_0 - V_D \right)
 \]
 \(\text{(1)}\)

- **Depletion-region width**:

 \[
 W_j = W_2 - W_1 = \sqrt{\frac{2 \varepsilon_{si} N_A + N_D}{q N_A N_D}} \left(\phi_0 - V_D \right)
 \]
 \(\text{(2)}\)

- **Maximum electric field**:

 \[
 E_j = \sqrt{\frac{2q N_A N_D}{\varepsilon_{si} N_A + N_D}} \left(\phi_0 - V_D \right)
 \]
 where

 \[
 \varepsilon_{si} = 11.7 \times 1.053 \times 10^{-12} \text{ F/cm}
 \]

The ratio of the n-side versus p-side depletion region width is determined by the doping level ratios:

\[
\frac{W_2}{-W_1} = \frac{N_A}{N_D}
\]
Dynamic Behavior

The model (for an abrupt junction):

Imagine the depletion region as the **dielectric** of a capacitor with dielectric constant of silicon.

And the n- and p-neutral regions act as the capacitor plates:

A small change in the voltage applied to the junction (dV_D) causes a change in the space charge (dQ_j).
Dynamic Behavior

Depletion layer capacitance:

Junction capacitance is easily computed by taking the derivative of equation (1) with respect to V_D. For an abrupt junction:

$$C_j = \frac{dQ_j}{dV_D} = A_D \frac{\varepsilon_{si} q}{2} \frac{N_A N_D}{N_A + N_D} (\phi_0 - V_D)^{-1} = \frac{C_{j0}}{\sqrt{1 - V_D/\phi_0}}$$

C_{j0} is the capacitance under *zero-bias* conditions and is only a function of the **physical parameters** of the device:

$$C_{j0} = A_D \frac{\varepsilon_{si} q}{2} \frac{N_A N_D}{N_A + N_D} \phi_0^{-1}$$

The same result can be obtained using the standard parallel-plate capacitor equation:

$$C_j = \varepsilon_{si} \left(\frac{A_D}{W_j} \right)$$

where W_j is given by equation (2).
Dynamic Behavior

Junction capacitance plotted as a function of applied voltage bias:

\[C_j \text{ (fF)/um}^2 \]

Abrupt junction
\[m = 0.5 \]

Linear junction
\[m = 0.33 \]

Capacitance decreases with an increasing reverse bias.

For -5V, the cap. is reduced by more than a factor of 2 over the zero bias case:

\[C_j = 2 \times 10^{-3} \text{ F/m}^2 \]
\[A_D = 0.5 \text{um}^2 \]
\[\phi_0 = 0.64 \text{V} \]

then a reverse bias of -2.5V yields

\[\left(0.9 \text{fF/um}^2\right)\left(0.5 \text{um}^2\right) = 0.45 \text{fF} \]
Dynamic Behavior

For the general case:

\[
C_j = \frac{C_j0}{(1 - V_D/\phi_0)^m}
\]

Where \(m \) is the grading coefficient.

- For an abrupt junction, \(m = 1/2 \).
- For a linearly graded junction, \(m = 1/3 \) (see previous figure).

For digital circuits, operating voltages tend to move rapidly over wide ranges.
In these cases, we can replace the voltage-dependent, nonlinear capacitance \(C_j \) with an
equivalent, linear capacitance \(C_{eq} \).

\[
C_{eq} = \frac{\Delta Q_j}{\Delta V_D} = \frac{Q_j(V_{\text{high}}) - Q_j(V_{\text{low}})}{V_{\text{high}} - V_{\text{low}}} = K_{eq} C_j0
\]

\[
K_{eq} = \frac{m}{-(\phi_0/V_{\text{high}} - V_{\text{low}}) (1 - m)} \left[(\phi_0 - V_{\text{high}})^{1-m} - (\phi_0 - V_{\text{low}})^{1-m} \right]
\]
Dynamic Behavior

For example:

Compute the average junction capacitance if this diode is switched between 0 and -5V.

\[K_{eq} = \frac{-0.64^{0.5}}{0 - (-5) \times (1 - 0.5)} \left[(0.64 - 0)^{1 - 0.5} - (0.64 - (-5))^{1 - 0.5} \right] = 0.502 \]

Average \(C_j = 0.502 \times 0.5 \text{fF/um}^2 = 0.25 \frac{\text{fF}}{\text{um}^2} \)
Secondary Effects

Actual diode current is less than what is predicted by the ideal eq.
Not all of the applied bias voltage falls across the junction, some falls across the neutral regions.

However, the resistivity of the neutral regions is generally small (1 to 100 Ohms).
This is usually modeled with a series resistance at the contacts.

Avalanche breakdown (MOS and bipolar processes):

Increased reverse bias increases electric field across the junction to E_{crit}.

Electron-hole pairs are created on collision with immobile silicon atoms.

Non-destructive but increases power consumption
Secondary Effects

Operating temperature effects

- The \textit{thermal voltage} is linearly dependent upon temperature (increasing f_T causes the current to drop).

\[
\phi_T = \frac{kT}{q} \quad \rightarrow \quad I_D = I_S \left(e^{V_D/\phi_T} - 1 \right)
\]

- The thermal equilibrium carrier concentrations \textbf{increase} with increasing temperature causing I_S to increase.

 Experimentally, the reverse current doubles every 8 degrees C.

These have a dramatic effect on the operation of the circuit.
- Current levels can increase substantially (~2X every 12 degrees C).
- The increase in leakage current through reverse-biased diodes decreases isolation quality.
The preceding discussion presented a model for manual analysis.

If second-order effects or more accuracy (better model) is desired, simulation is required.

The standard SPICE model:

\[
I_D = I_S \left(e^{\frac{V_D}{n\phi T}} - 1 \right)
\]

Extra parameter \(n \) is called the emission coefficient. It is equal to 1 for most diodes.

\(R_S \) models the *series resistance* of the neutral regions (reducing current).
Diode Details

SPICE Models

The dynamic behavior is modeled by the *nonlinear* capacitance C_D.

Two different charge storage effects are combined in the diode:

- *excess minority carrier charge* (not discussed, forward bias only)
- *depletion-region charge*

\[
C_D = \frac{\tau_T I_S}{\phi_T} e^{V_D/n\phi_T} + \frac{C_{j0}}{(1 - V_D/\phi_0)^m}
\]

where: \(\tau_T = \text{transit time}\)

Table 1: First-order SPICE diode model parameters

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Symbol</th>
<th>SPICE Name</th>
<th>Units</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturation Current</td>
<td>I_S</td>
<td>IS</td>
<td>A</td>
<td>1.0E-14</td>
</tr>
<tr>
<td>Emission Coefficient</td>
<td>n</td>
<td>N</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Series Resistance</td>
<td>R_S</td>
<td>RS</td>
<td>Ω</td>
<td>0</td>
</tr>
<tr>
<td>Transit Time</td>
<td>τ_T</td>
<td>TT</td>
<td>s</td>
<td>0</td>
</tr>
<tr>
<td>Zero-bias Junction Cap</td>
<td>C_{j0}</td>
<td>CJ0</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>Grading Coefficient</td>
<td>m</td>
<td>M</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>Junction Potential</td>
<td>ϕ_0</td>
<td>VJ</td>
<td>V</td>
<td>1</td>
</tr>
</tbody>
</table>