Emerging Technologies
— A Critical Review

Presenter: Qufei Wu
12/05/05
CMOS device and beyond
Outline

- CMOS device challenges
- Electronic Nanotechnology Devices
- conclusion
Moore’s Law and “Red Brick Wall”

- Moore’s law has been based on silicon because it allows increment changes in size to produce integral improvement in performance.

- Approaching a “Red Brick Wall”, challenges/ opportunity for semiconductor R&D.
ITRS Highlights Scaling Barriers

Table 2a High Performance Logic Technology Requirements—2003 ITRS

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TECHNOLOGY NODE (nm)</td>
<td>100</td>
<td>90</td>
<td>65</td>
<td>45</td>
<td>32</td>
<td>22</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPU GATE LENGTH</td>
<td>45</td>
<td>37</td>
<td>32</td>
<td>28</td>
<td>25</td>
<td>18</td>
<td>13</td>
<td>9</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Gate Dielectric Equivalent Oxide Thickness (EOT) (nm) [1]</td>
<td>1.3</td>
<td>1.2</td>
<td>1.1</td>
<td>1.0</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.50</td>
<td>0.45</td>
</tr>
<tr>
<td>Electrical Thickness Adjustment Factor (Gate Depletion and Quantum Effects) (nm) [2]</td>
<td>0.8</td>
<td>0.8</td>
<td>0.7</td>
<td>0.7</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Electrical Equivalent Oxide Thickness in Inversion (nm) [4]</td>
<td>2.1</td>
<td>2.0</td>
<td>1.8</td>
<td>1.7</td>
<td>1.3</td>
<td>1.2</td>
<td>1.1</td>
<td>1.0</td>
<td>0.90</td>
<td>0.9</td>
</tr>
<tr>
<td>Vdd (V) [4]</td>
<td>1.2</td>
<td>1.2</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.0</td>
<td>1.0</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Present-Day CMOS Limitations

- Feature sizes nearing physical limits
- Lithography. Fabrication process reaches limits
- Power consumption – major concern
- Quantum effects must be accounted for
- Solution? Nanotechnology
Emerging Technology Sequence
CMOS performance trend

- To sustain the historical trend for CMOS technology after 2010 requires new semiconductor material and structure. Even early if current bulk-Si data do not improve significantly
New Material & Non-Classical structures for CMOS

- Conventional Bulk CMOS
- SOI (silicon-on-insulator) $\leq 1.2 \times$ bulk
- Strained Si/SiGe $\leq 1.6 \times$ bulk
- Double-Gate $\leq 1.8 \times$ bulk

17%/Year
Antoniadis-ADT-01
Replace CMOS: New Devices and Architecture

- Conventional Si-based CMOS devices will eventually encounter a fundamental performance limit as their sizes are scaled down.

- The International Technology Roadmap for Semiconductors (ITRS) identifies promising avenues of research for developing technologies to eventually replace CMOS.
Emerging Research Devices and Technologies

Table 65 Estimated Parameters for Emerging Research Devices and Technologies in the year 2016

<table>
<thead>
<tr>
<th>Technology</th>
<th>T_{min} sec</th>
<th>T_{max} sec</th>
<th>CD_{min} m</th>
<th>CD_{max} m</th>
<th>Energy J/µop</th>
<th>Cost min $/gate</th>
<th>Cost max $/gate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si CMOS</td>
<td>3E-11</td>
<td>1E-6</td>
<td>5E-9</td>
<td>5E-6</td>
<td>4E-18</td>
<td>1E-11</td>
<td>3E-3</td>
</tr>
<tr>
<td>RSFQ</td>
<td>1E-12</td>
<td>5E-11</td>
<td>3E-7</td>
<td>1E-6</td>
<td>2E-18</td>
<td>1E-3</td>
<td>1E-2</td>
</tr>
<tr>
<td>Molecular</td>
<td>1E-8</td>
<td>1E-3</td>
<td>1E-9</td>
<td>5E-9</td>
<td>1E-20</td>
<td>1E-12</td>
<td>1E-10</td>
</tr>
<tr>
<td>Plastic</td>
<td>1E-4</td>
<td>1E-3</td>
<td>1E-4</td>
<td>1E-3</td>
<td>4E-18</td>
<td>1E-7</td>
<td>1E-6</td>
</tr>
<tr>
<td>Optical (digital, all optical)</td>
<td>1E-16</td>
<td>1E-12</td>
<td>2E-7</td>
<td>2E-6</td>
<td>1E-12</td>
<td>1E-3</td>
<td>1E-2</td>
</tr>
<tr>
<td>NEMS (conservative)</td>
<td>1E-7</td>
<td>1E-3</td>
<td>1E-8</td>
<td>1E-7</td>
<td>1E-21</td>
<td>1E-8 179</td>
<td>1E-5</td>
</tr>
<tr>
<td>Biologically Inspired</td>
<td>1E-13</td>
<td>1E-4</td>
<td>6E-6</td>
<td>5E-5</td>
<td>3E-25</td>
<td>5E-4</td>
<td>3E-1</td>
</tr>
<tr>
<td>Quantum</td>
<td>1E-16</td>
<td>1E-15</td>
<td>1E-8</td>
<td>1E-7</td>
<td>1E-21</td>
<td>1E3</td>
<td>1E5</td>
</tr>
</tbody>
</table>

In this table T stands for system cycle time (switching time), CD stands for critical dimension (e.g., physical gate length), Energy is the intrinsic operational energy of one device, and Cost is defined as $/gate.
Emerging Research Devices and Technologies
- Plastic Transistors

- Plastic Transistors – Thin film transistor (TFT) fabricate on plastic substrates.
- Plastic transistors have the potential to provide very low-cost, rugged large area electronics which have many potential applications.
- A process technology consisting just of printing operations on paper-based substrates would have an intrinsic cost structure similar to color inkjet printing today.
Emerging Research Devices and Technologies
- Optical

- Optical – Optical computing is based on using light transmission and interaction with solids for information processing. Its potential advantages related to the following
 - Optical beans do not interact with each other
 - Optical information processing functions can be performed in parallel
 - Ultimate high speed of signal propagation (speed of light)

- Some disadvantages of digital optical computing include:
 - The relatively large size of components
 - High-speed computation can be realized only at the expense of dissipated power
Emerging Research Devices and Technologies
- NEMS,

- NEMS – Nano-electro mechanical system, Mechanical digital signals are represented by displacement of solid rods.
- Low dissipation is possible because NEMS computation is logically reversible.
Emerging Research Devices
----Molecular Electronics

- **Molecular Electronics** - digital logic circuits designed using single molecules
- The significant scaling factor gained from molecular-scale devices
- Surmount critical dimension control problems of CMOS using self-assembling molecules
- **Molecular electronics** are the most futuristic devices among all discussed so far. They have a large potential, but there are huge obstacles that must be overcome.
- chemists, biologists, physicists and engineers develop an **interdisciplinary platform** for communicating the needs of the electronics industry in one direction and the possibilities of chemical synthesis and self-assembly concepts in the other.
“Top-down” and “bottom up” approach

- The present route to manufacturing of electronic device is called “top-down”.
- Nano-scientists are now developing a new approach based on self-assembly of atoms and molecules called ‘bottom up’.
- Expert opinion is that eventually the ‘top-down’ and ‘bottom-up’ approaches can both be combined into a single nanoelectronics manufacturing process. Such a hybrid method has the potential to lead to a more economical nano-manufacturing process.
Looking to the future

- Silicon based CMOS will be a major part of microelectronics for the foreseeable future.
- New nanoscale devices will encompass a broad range of fabrication methodologies and function modalities.
- Their near term applications will require nanoscale devices to be functionally and technologically compatible with silicon CMOS.
- In the longer term, charge-based nanoscale devices may be supplemented with one or more new information processing technologies using a quite new logic “state variable” or means of representing the bit.
THANK YOU