Emerging Research Devices

--- International technology roadmap for semiconductors
Challenges in the Microelectronics Industry

- Challenges related to logic
 - To extend the CMOS technology to and beyond 45 nm nodes
 - Invention and reduction to practice of a new manufacturable information and signal processing technology addressing beyond CMOS applications

- Challenges related to memory technologies
 - Need a new memory technology to combine the best features of volatile and non-volatile memories
Emerging Research Devices

- New Devices
 - Non-classical CMOS
 - Memory devices
 - Logic Devices

- New Architecture
Emerging Research Devices
----Non-classical CMOS

- Advanced MOSFETs
 - Provide a path to scaling CMOS to the end of Roadmap using new transistor structural designs and new materials

- Definitions and classifications
 - Transport-enhanced FETS: enhance the velocity of the carriers
 - Ultra-thin Body SOI FETs: a thin transistor body is employed
 - Source/Drain Engineered FETs: engineering the source/drain
 - Multiple Gate FETs:
 - N-Gate (N>2) FETs: use more than two gates to improve electrostatic control
 - Double-gate FETs: use two isolated gates for low-power and mixed-signal processing
Emerging Research Devices
----Memory devices

- Attempt to mimic and improve on the capabilities of present day memory technologies

- Definitions and classifications
 - Phase change memory
 - Floating body DRAM
 - Nanofloating gate memory (NFGM)
 - Single/few electron memory
 - Insulator resistance change memory
 - Molecular memory
Emerging Research Devices

----Logic Devices

- New technologies based on something other than electronic charge that... extend the scaling of information processing technologies through multiple generations beyond 2019.

- Fundamental requirements
 1. be able to extend microelectronic orders of magnitude beyond the domain of CMOS and be capable of integration on or with a CMOS platform;
 2. be able to provide a means for an energy restorative functional process to sustain steady operation
Emerging Research Devices

Logic Devices

- Resonant tunnel devices
- Single-electron transistors
- Rapid single flux quantum (RSFQ)
- Quantum cellular automata (QCA)
- 1D structures
- Molecular devices
- Spin transistors
Emerging Research Architectures

- Fine-Grained parallel implementations in nano-scale cellular arrays
 - Quantum cellular automata architecture implementations
 - Cellular nonlinear networks
- Defect tolerant architecture implementations
- Biologically inspired architecture implementations
- Coherent quantum computing
Functional Comparison

- In the comparisons of newly emerging technologies:
 - Few of the new technologies are directly competitive with scaled CMOS
 - Most are highly complimentary
 - Heterogeneous integration of the emerging technologies with silicon can expand its overall application space.