Chapter 3
RDF Syntax 1

What is RDF?

• A data model for representing information (esp. metadata) about resources in the Web
• Can represent information about things that can be identified on the Web, even when not retrievable (e.g., a book)
• Use cases: provide data for applications rather than directly to people

Topics

• Basic concepts of RDF
 • resources, properties, values, statements, triples
 • URIs and URIrefs
 • RDF graphs
 • Literals and Qnames
• Vocabularies and modeling
 • URIrefs as vocabularies
 • Data modeling IN RDF
• Serialization of RDF graphs: XML, Turtle, ...

RDF Basics

• Core idea: identify resources using Web identifiers and describing resources in terms of simple properties and property values
• To identify resources, RDF uses Uniform Resource Identifiers (URIs) and URI references (URIrefs).
• Definition: A resource is anything that is identifiable by a URIref
Example

Consider the following information:

“there is a Person identified by http://www.w3.org/People/EM/contact#me, whose name is Eric Miller, whose email address is em@w3.org, and whose title is Dr.”

Example (cont’d)

Basics

The resources being described have properties which have values, and that resources can be described by making statements that specify those properties and values

- The part that identifies the thing the statement is about is the subject
- The part that identifies the property of the subject the statement specifies is the predicate
- The part that identifies the property’s value is the object

Example

http://www.example.org/index.html has a creator whose value is “John Smith”

- The subject is the URL http://www.example.org/index.html
- The predicate is the word “creator”
- The object is the phrase “John Smith”
RDF Triples

- RDF statements can be written as **triples**
- The simple **ntriples** notation has a set of triples terminated by a period, where URI’s are given inside angle brackets

  ```
  ```

Uniform Resource Identifiers (URIs)

- URIs identify resources on the Web
- Unlike URLs, they aren’t limited to identifying things with network locations
- No organization controls who makes URIs or how they can be used
 - Some URI schemes (http: URL’s) depend on centralized systems such as DNS
 - Others are **completely decentralized**

URI Reference (URIref)

- A **URIref** is a URI with an optional fragment identifier at the end, e.g:

  ```text
  http://example.org/index.html#section2
  ```
- Fragment usecase:
 - In HTML a # fragment refers to a place in the page
 - In RDF we can use fragments to refer to resources in a RDF graph that the URI denotes, e.g., subjects, predicates or objects

    ```
    http://www.w3.org/2004/02/skos/core : vocabulary for describing topics
    http://www.w3.org/2004/02/skos/core#broader : the broader concept in SKOS Core vocabulary
    ```
- Like URLs, URIrefs may be either **absolute** or **relative**
 - Note: the empty URI refers to the resource it’s in
URIrefs in RDF (cont’d)

- RDF and Browsers use URIrefs to identify things, but interpret URIrefs slightly differently:
 - Browsers also use URIrefs to retrieve things
 - RDF uses URIrefs only to identify things and these might not even be retrievable

- **Linked Data** best practice is to use HTTP URIs that return RDF data for every URI
 - `http://dbpedia.org/page/Alan_Turing`
 - `curl -I http://dbpedia.org/page/Alan_Turing`

RDF Graphs

- RDF models statements by **nodes** and **arcs** in a graph
- A **statement** is represented by a node for the subject, a node for the object and an arc for the predicate (subject => object)
- A **node** may be identified by a **URIref** or it can be a **literal** or a **blank node**
- An **arc** is identified by a **URIref**
- **Note:** We will draw RDF graphs as **directed graphs**
 - But an arc can be the subject of an RDF statement
 - `:has_parent owl:inverseOf :has_child`

Example

- Consider the following statements:
 - `http://www.example.org/index.html` has a creation-date whose value is August 16, 1999.
 - `http://www.example.org/index.html` has a language whose value is English.
In terms of the relational model, an RDF statement is like a tuple in a relation Graph with columns Subject, Predicate, Object.

For first-order logic, an RDF statement is like an atomic formula triple(subj, pred, obj) where triple is a FOL predicate and subj, pred and obj are constants.

- Alternatively: pred(subj, obj)

What is 27? Number or string?
Plain and Typed Literals

- There are two kinds of literals: **plain** and **typed**
- Plain literals have a **lexical form** (their lexical value) and optionally a **language tag**, e.g.:
 - “27”, “Hello world”@en
- **RDF typed literals** are formed by pairing a string with a URIref for a particular **datatype**, e.g.:
 - “27”^^http://www.w3.org/2001/XMLSchema#integer
 - “27”^^xsd:int

Data Types for Literals

- In practice, the most widely used data typing scheme will be the one by XML Schema
 - But the use of any externally defined data typing scheme is allowed in RDF documents
- XML Schema predefines a large range of data types
 - E.g. Booleans, integers, floating-point numbers, times, dates, etc.

XMLSchema Datatypes

Qnames for URIrefs

- The ntriples notation results in very long lines
- We can use an **XML qualified name (QName)** w/o brackets for a full URI reference
 - http://dbpedia.org/page/Alan_Turing
 - dbp:Alan_Turing
- A **Qname** has a **prefix** that has been assigned to a **namespace URI**, followed by a **colon**, and then a **local name**.
- The concepts of **names** and **namespaces** used in RDF originate in XML
Topics

- Basic concepts of RDF
 - resources, properties, values, statements, triples
- URIs and URIrefs
- RDF graphs
- Literals and QNames
- Vocabularies and modeling
 - URIrefs as vocabularies
 - Data modeling IN RDF
 - Serialization of RDF graphs: XML, Turtle, ...