RDF and RDB 1

Some slides adapted from a presentation by Ivan Herman at the Semantic Technology & Business Conference, 2012.
Mapping Relational data to RDF

Suppose we have data in a relational database that we want to export as RDF

1. Choose an RDF vocabulary to represent the data
2. Define a mapping from the relational tables to RDF

Then either:

a) Materialize the RDF triples from the database using the mappings
b) Use a server to dynamically access the relational data given a SPARQL query
c) Use a DBMS that directly supports RDF (e.g., Oracle 11g, DB2)
Relational database vendors realize the importance of the Semantic Web market. Many systems have a “hybrid” view:
 - Traditional, relational storage, usually coupled with SQL
 - RDF storage, usually coupled with SPARQL
 - Examples include Oracle 11g, IBM’s DB2 and OpenLink Virtuoso

The model involves exporting relational data to RDF.
Exporting relational data to RDF

- *Export* does not *necessarily* mean physical conversion
 - for very large databases a “duplication” would not be an option
 - systems may provide SPARQL⇔SQL “bridges” to make queries on the fly

- Result of export is a “logical” view of the relational content
Simple export: Direct Mapping

- Provide a canonical RDF “view” of relational tables
- Only needs the information in the RDB Schema
Table references are URI objects

Each column name provides a predicate

Each row is a subject

Cells are Literal objects
Direct mapping approach

RDB Schema → Direct Mapping → "Direct Graph" → Tables
Advantages

- Direct mapping is simple, does not require any other concepts
- know the schema ⇒ know the RDF graph structure
- know the RDF graph structure ⇒ good idea of the schema (!)

Disadvantages:

- the resulting graph is not what the application really wants
- Strings, not things
Extended mapping approach

- Direct Mapping
 - RDB Schema
 - Tables

- "Direct Graph"
 - Graph Processing (Rules, SPARQL, ...)

- Final, Application Graph
Beyond Direct Mapping: R2RML

- Separate vocabulary to control the details of the mapping, e.g.:
 - finer control over the choice of the subject
 - creation of URI references from cells
 - predicates may be chosen from a vocabulary
 - datatypes may be assigned
 - etc.

- Gets to the final RDF graph with one processing step
Beyond Direct Mapping: R2RML

RDB Schema → R2RML Mapping → R2RML Instance → Tables → Final, Application Graph
Fundamentals are similar:
- each row is turned into a series of triples with a common subject

Direct mapping is a “default” R2RML mapping

Which of the two approaches is used depend on local tools, personal experiences and background,…
- e.g., user can begin with a “default” R2RML, and gradually refine it
● **D2RQ** was a practical system first developed in 2004 that became widely used.

● W3C formed a **RDB2RDF working group** in 2009 to develop a standard.

● **R2RML: RDB to RDF Mapping Language** is a W3C Recommendation since 2013-09-27.

● Several **implementations** are available.