Triple Stores
What is a triple store?

- A specialized database for RDF triples
- Can ingest RDF in a variety of formats
- Supports a query language
 - SPARQL is the W3C recommendation
 - Other RDF query languages exist (e.g., RDQL)
 - Might or might not do inferencing
 - Most query languages don’t handle inserts
- Triple stored in memory in a persistent backend
- Persistence provided by a relational DBMS (e.g., mySQL) or a custom DB for efficiency.
Architectures

- Can be divided into several categories: *In-memory, Native store, Non-native store*
- In memory: RDF Graph is stored as triples in main memory
- Native store: Persistent storage systems with custom DBs, e.g.: JENA TDB, Sesame Native, Virtuoso, AllegroGraph, Oracle 11g
- Non-Native store: Persistent storage systems set-up to run on third party DBs, e.g., Jena SDB using mysql or postgres
Architecture trade-offs

- In memory is fastest, obviously, but load time has to be factored in.
- Native stores are fast, scalable, and popular now.
- Non-native stores may be better if you have a lot of updates and/or need good concurrency control.
- See the W3C page on large triple stores for some data on scaling for many stores.
Large triple stores in 2011

1 AllegroGraph (1+Trillion)
2 OpenLink Virtuoso v6.1 - 15.4B+ explicit; uncounted virtual/inferred
 2.1 Benchmarks data sources
 2.2 Older comments
3 BigOWLIM (12B explicit, 20B total); 100,000 queries per $1
 3.1 Scalability and Loading Speed
 3.2 Query Performance, Horizontal Scalability in the Cloud
 3.3 Performance features
4 Garlik4store (15B)
5 Bigdata(R) (12.7B)
6 YARS2 (7B)
7 Jena TDB (1.7B)
8 Jena SDB (650M)
9 Mulgara (500M)
10 RDF gateway (262M)
11 Jena with PostgreSQL (200M)
12 Kowari (160M)
13 3store with MySQL 3 (100M)
14 Sesame (70M)
15 Others who claim to go big
16 Questions
17 Related

http://www.w3.org/wiki/LargeTripleStores
Many triple stores support quads for **named graphs**

A named graph is just an RDF with a URI name often called the *context*

Such a triple store divides its data a default graph and zero or more additional named graphs

SPARQL has support for named graphs

De facto standards exist for representing quad data, e.g., **n-quads** and **TriG** (a turtle/N3 variant)

AllegroGraph stores quints (S,P,O,C,ID), the ID can be used to attach metadata to a triple
Most triple stores don’t do much (or any) reasoning and use a simple model:

- You do the reasoning to materialize all of the triples you want, which you then load into the store
- Triple store provides query and update APIs, access control, SPARQL interface, efficient indexing, etc.

Some do support reasoning, e.g.,

- Jena has a native rules engine and an API for external reasoners (e.g., Pellet, Fact++)
- Sesame has a native RDFS reasoner
- Stardog supports OWL DL reasoning via query expansion
Example: Jena Framework

- An open software Java system originally developed by HP (2002-2009)
 - Moved to Apache when HP Labs discontinued its Semantic Web research program
 - https://jena.apache.org/
- Using the TDB native store, it can easily handle ~2B triples
- Good tutorials and documentation
- Has internal reasoners and can work with DIG compliant reasoners such as Pellet
- Supports a Native API and SPARQL via Fuseki
Example: Sesame

- Sesame is an open source RDF framework with support for RDFS inferencing and querying
- http://www.openrdf.org/
- Implemented in Java
- Query languages: SeRQL, RQL, RDQL and SPARQL
- Triples can be stored in memory, on disk, or in a RDBMS
- Has a native RDFS reasoner
Example: Stardog

- http://stardog.com/ by Clark and Parsia
- Pure Java RDF database ("quad store")
- Lightweight and very fast for in-memory use
- Performance for complex SPARQL queries
- Reasoning support via Pellet for OWL DL and query rewriting for OWL 2 QL, EL & RL
- Command line interface and JAVA API
- Commercial, but has a free version good for modest projects
Much work on benchmarking of triple stores
There are several standard benchmark sets
Two key things are measured include
 - Time to load and index triples
 - Time to answer various kinds of SPARQL queries

The **Berlin SPARQL Benchmarks** evaluated 4store, BigData, BigOwlim, Jena TDB and Virtuoso in 2011 with 100M and 200M datasets.

The numbers are “query mixes per hour, so bigger is better
Load Time

<table>
<thead>
<tr>
<th>SUT</th>
<th>100M</th>
<th>200M</th>
</tr>
</thead>
<tbody>
<tr>
<td>4store</td>
<td>26:42*</td>
<td>1:12:04*</td>
</tr>
<tr>
<td>BigData</td>
<td>1:03:47</td>
<td>3:24:25</td>
</tr>
<tr>
<td>BigOwlim</td>
<td>17:22</td>
<td>38:36</td>
</tr>
<tr>
<td>TDB</td>
<td>1:14:48</td>
<td>2:45:13</td>
</tr>
<tr>
<td>Virtuoso</td>
<td>1:49:26**</td>
<td>3:59:38**</td>
</tr>
</tbody>
</table>

* The N-Triples version of the dataset was used.

** The dataset was split into 100 respectively 200 Turtle files and loaded with the DB.DBA.TTLP function consecutively.
Queries per hour

6.1.1 QMpH: Explore use case

The complete query mix is given here.

<table>
<thead>
<tr>
<th></th>
<th>100m</th>
<th>200m</th>
</tr>
</thead>
<tbody>
<tr>
<td>4store</td>
<td>5589</td>
<td>4593</td>
</tr>
<tr>
<td>BigData</td>
<td>2428</td>
<td>1795</td>
</tr>
<tr>
<td>BigOwl</td>
<td>3534</td>
<td>1795</td>
</tr>
<tr>
<td>TDB</td>
<td>2274</td>
<td>1443</td>
</tr>
<tr>
<td>Virtuoso</td>
<td>7352</td>
<td>4669</td>
</tr>
</tbody>
</table>

A much more detailed view of the results for the Explore use case is given under [Detailed Results For The Explore](#).

6.1.2 QMpH: Explore and Update use case

The Explore and Update query mix consists of the [Update query mix](#) (queries 1 and 2) and the [Explore query mix](#) (queries 3 and 4).

<table>
<thead>
<tr>
<th></th>
<th>100m</th>
</tr>
</thead>
<tbody>
<tr>
<td>4store</td>
<td>5311</td>
</tr>
<tr>
<td>BigOwl</td>
<td>2809</td>
</tr>
<tr>
<td>TDB</td>
<td>680</td>
</tr>
</tbody>
</table>
A triple store is an essential component of any system using RDF.
There are a number of good ones available, both open sourced and commercial.
Developing triple stores for large-scale parallel systems is still a research topic.