OWL, DL and Rules

Based on slides from Grigoris Antoniou, Frank van Harmele and Vassilis Papataxiarhis

Semantic Web and Logic

• The Semantic Web is grounded in logic
• But what logic?
 – OWL Full = Classical first order logic (FOL)
 – OWL-DL = Description logic
 – N3 rules ~= logic programming (LP) rules
 – SWRL ~= DL + LP
 – Other choices are possible, e.g., default logic, Markov logic, …
• How do these fit together?
• What are the consequences

We need both structure and rules

• OWL’s ontologies are based on Description Logics (and thus in FOL)
 ✓ The Web is an open environment.
 ✓ Reusability / interoperability.
 ✓ An ontology is a model easy to understand.
• Many rule systems based on logic programming
 ✓ For the sake of decidability, ontology languages don’t offer the expressiveness we want (e.g. constructor for composite properties?). Rules do it well.
 ✓ Efficient reasoning support already exists.
 ✓ Rules are well-known in practice.

A common approach

High Expressiveness

Rules Layer

SWRL

Ontology Layer

OWL-DL

Conceptualization of the domain
LP and classical logic overlap

Description Logics vs. Horn Logic

- Neither of them is a subset of the other
- It is impossible to assert that persons who study and live in the same city are “home students” in OWL
 - This can be done easily using rules:
 \[\text{studies}(X,Y), \text{lives}(X,Z), \text{loc}(Y,U), \text{loc}(Z,U) \rightarrow \text{homeStudent}(X) \]
- Rules cannot assert the information that a person is either a man or a woman
 - This information is easily expressed in OWL using disjoint union

Basic Difficulties

What’s Horn clause logic

- Prolog and most ‘logic’-oriented rule languages use horn clause logic
 - Cf. UCLA mathematician Alfred Horn
- Horn clauses are a subset of FOL where every sentence is a disjunction of literals (atoms) where at most one is positive
 \[\neg P \lor \neg Q \lor \neg R \lor S \]
 \[\neg P \lor \neg Q \lor \neg R \]
An alternate formulation

- Horn clauses can be re-written using the implication operator
 - \(\neg P \lor Q = P \rightarrow Q \)
 - \(\neg P \lor \neg Q \lor R = P \land Q \rightarrow R \)
 - \(\neg P \lor \neg Q = P \land Q \rightarrow \)

- What we end up with is \(\sim \) “pure prolog”
 - Single positive atom as the rule conclusion
 - Conjunction of positive atoms as the rule antecedents (conditions)
 - No \textbf{not} operator
 - Atoms can be predicates (e.g., mother(X,Y))

Where are the quantifiers?

- Quantifiers (forall, exists) are implicit
 - Variables in head are universally quantified
 - Variables only in body are existentially quantified
- Example:
 - \(\text{isParent}(X) \leftarrow \text{hasChild}(X,Y) \)
 - \(\forall X: \text{isParent}(X) \) if \(\exists Y: \text{hasChild}(X,Y) \)

We can relax this a bit

- Head can contain a conjunction of atoms
 - \(P \land Q \leftarrow R \) is equivalent to \(P \leftarrow R \) and \(Q \leftarrow R \)
- Body can have disjunctions
 - \(P \leftarrow R \lor Q \) is equivalent to \(P \leftarrow R \) and \(P \leftarrow Q \)
- But something are just not allowed:
 - No disjunction in head
 - No negation operator, i.e. NOT

Facts & rule conclusions are definite

- A fact is just a rule with the trivial true condition
- Consider these true facts:
 - \(P \lor Q \)
 - \(P \rightarrow R \)
 - \(Q \rightarrow R \)
- What can you conclude?
- Can this be expressed in horn logic?
Facts & rule conclusions are definite

- Consider these true facts:
 - not(P) → Q, not(Q) → P
 - P → R
 - Q → R
- A horn clause reasoner (e.g., Prolog) will be unable to prove that either P or Q is necessarily true or false
- And can not show that R must be true

Open- vs. closed-world assumption

- Logic Programming – CWA
 - If KB ∉ a, then KB = KB ∪ ¬a
- Classical Logic – OWA
 - It keeps the world open.
 - KB:
 Man ⊑ Person, Woman ⊑ Person
 Bob ∈ Man, Mary ∈ Woman
 Query: “find all individuals that are not women”

Non-ground entailment

- The LP-semantics is defined in terms of minimal Herbrand model, i.e. sets of ground facts
- Because of this, Horn clause reasoners can not derive rules, so that can not do general subsumption reasoning

Decidability

- The largest obstacle!
 - Tradeoff between expressiveness and decidability.
- Facing decidability issues from 2 different angles
 - In LP: Finiteness of the domain
 - In classical logic (and thus in DL): Combination of constructs
- Problem:
 Combination of “simple” DLs and Horn Logic are undecidable. (Levy & Rousset, 1998)
Rules + Ontologies

- Still a challenging task!
- A number of different approaches exists: SWRL, DLP (Grosos), dl-programs (Eiter), DL-safe rules, Conceptual Logic Programs (CLP), AL-Log, DL + log
- Two main strategies:
 - Tight Semantic Integration (Homogeneous Approaches)
 - Strict Semantic Separation (Hybrid Approaches)

Homogeneous Approach

- Interaction with tight semantic integration.
- Both ontologies and rules are embedding in a common logical language.
- No distinction between rule predicates and ontology predicates.
- Rules may be used for defining classes and properties of the ontology.
- Example: SWRL, DLP

Hybrid Approach

- Integration with strict semantic separation between the two layers.
- Ontology is used as a conceptualization of the domain.
- Rules cannot define classes and properties of the ontology, but some application-specific relations.
- Communication via a “safe interface”.
- Example: Answer Set Programming (ASP)

The Essence of DLP

- Simplest approach for combining DLs with Horn logic: their intersection
 - the Horn-definable part of OWL, or equivalently
 - the OWL-definable part of Horn logic
Advantages of DLP

- **Modeling**: Freedom to use either OWL or rules (and associated tools and methodologies)
- **Implementation**: use either description logic reasoners or deductive rule systems
 - extra flexibility, interoperability with a variety of tools
- **Expressivity**: existing OWL ontologies frequently use very few constructs outside DLP

RDFS and Horn Logic

- **Statement**: (a,P,b)
- **type**: (a,C)
- **C subClassOf D**: $C(X) \rightarrow D(X)$
- **P subPorpertyOf Q**: $P(X,Y) \rightarrow Q(X,Y)$
- **domain(P,C)**: $P(X,Y) \rightarrow C(X)$
- **range(P,C)**: $P(X,Y) \rightarrow C(Y)$

OWL in Horn Logic

- **C sameClassAs D**: $C(X) \rightarrow D(X)$
- **D(X) → C(X)**
- **P samePropertyAs Q**: $P(X,Y) \rightarrow Q(X,Y)$
- **Q(X,Y) → P(X,Y)**

OWL in Horn Logic (2)

- **transitiveProperty(P)**: $P(X,Y), P(Y,Z) \rightarrow P(X,Z)$
- **inverseProperty(P,Q)**: $Q(X,Y) \rightarrow P(Y,X)$
- **functionalProperty(P)**: $P(X,Y), P(X,Z) \rightarrow Y=Z$
OWL in Horn Logic (3)

\[(C_1 \cap C_2) \text{ subClassOf } D\]

\[C_1(X), C_2(X) \rightarrow D(X)\]

\[C \text{ subClassOf } (D_1 \cap D_2)\]

\[C(X) \rightarrow D_1(X)\]

\[C(X) \rightarrow D_2(X)\]

OWL in Horn Logic (4)

\[(C_1 \cup C_2) \text{ subClassOf } D\]

\[C_1(X) \rightarrow D(X)\]

\[C_2(X) \rightarrow D(X)\]

\[C \text{ subClassOf } (D_1 \cup D_2)\]

Translation not possible!

OWL in Horn Logic (5)

\[C \text{ subClassOf } \text{AllValuesFrom}(P,D)\]

\[C(X), P(X,Y) \rightarrow D(Y)\]

\[\text{AllValuesFrom}(P,D) \text{ subClassOf } C\]

Translation not possible!

OWL in Horn Logic (6)

\[C \text{ subClassOf } \text{SomeValuesFrom}(P,D)\]

Translation not possible!

\[\text{SomeValuesFrom}(P,D) \text{ subClassOf } C\]

\[D(X), P(X,Y) \rightarrow C(Y)\]
OWL in Horn Logic (7)

• MinCardinality cannot be translated due to existential quantification
• MaxCardinality 1 may be translated if equality is allowed
• Complement cannot be translated, in general

The Essence of SWRL

• Combines OWL DL (and thus OWL Lite) with function-free Horn logic.
• Thus it allows Horn-like rules to be combined with OWL DL ontologies.

Rules in SWRL

B1, . . . , Bn → A1, . . . , Am

A1, . . . , Am, B1, . . . , Bn have one of the forms:
 – C(x)
 – P(x,y)
 – sameAs(x,y) differentFrom(x,y)

where C is an OWL description, P is an OWL property, and x,y are variables, OWL individuals or OWL data values.

Drawbacks of SWRL

• Main source of complexity:
 – arbitrary OWL expressions, such as restrictions, can appear in the head or body of a rule.
• Adds significant expressive power to OWL, but causes undecidability
 – there is no inference engine that draws exactly the same conclusions as the SWRL semantics.
SWRL Sublanguages

- SWRL adds the expressivity of DLs and function-free rules.
- One challenge: identify sublanguages of SWRL with right balance between expressivity and computational viability.
- A candidate OWL DL + DL-safe rules
 - every variable must appear in a non-description logic atom in the rule body.

Non-monotonic rules

- Non-monotonic rules exploit an “unprovable” operator
- This can be used to implement default reasoning, e.g.,
 - assume P(X) is true for some X unless you can prove hat it is not
 - Assume that a bird can fly unless you know it can not
monotonic

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>canFly(X) :- bird(X)</code></td>
<td>A bird can fly.</td>
</tr>
<tr>
<td><code>bird(X) :- eagle(X)</code></td>
<td>An eagle is a bird.</td>
</tr>
<tr>
<td><code>bird(X) :- penguin(X)</code></td>
<td>A penguin is a bird.</td>
</tr>
<tr>
<td><code>eagle(sam)</code></td>
<td>Eagle named Sam.</td>
</tr>
<tr>
<td><code>penguin(tux)</code></td>
<td>Penguin named Tux.</td>
</tr>
</tbody>
</table>

Non-monotonic

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>canFly(X) :- bird(X), \(+ not(canFly(X))</code></td>
<td>A bird can fly if it is not marked as not able to fly.</td>
</tr>
<tr>
<td><code>bird(X) :- eagle(X)</code></td>
<td>An eagle is a bird.</td>
</tr>
<tr>
<td><code>bird(X) :- penguin(X)</code></td>
<td>A penguin is a bird.</td>
</tr>
<tr>
<td><code>not(canFly(X)) :- penguin(X)</code></td>
<td>If a penguin is marked as not able to fly, then penguins can't fly.</td>
</tr>
<tr>
<td><code>eagle(sam)</code></td>
<td>Eagle named Sam.</td>
</tr>
<tr>
<td><code>penguin(tux)</code></td>
<td>Penguin named Tux.</td>
</tr>
</tbody>
</table>

Rule priorities

- This approach can be extended to implement systems where rules have priorities.
- This seems to be intuitive to people – used in many human systems.
 - E.g., University policy overrides Department policy.
 - The “Ten Commandments” cannot be contravened.

Two Semantic Webs?

![Diagram showing two semantic webs with XML, OWL, RDF, and other components.](diagram)
Limitations

- The rule inference support not integrated with OWL classifier.
- New assertions by rules may violate existing restrictions in ontology. New inferred knowledge from classification may in turn produce knowledge useful for rules.

<table>
<thead>
<tr>
<th>Ontology Classification</th>
<th>Rule Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inferred Knowledge</th>
<th>Inferred Knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Limitations

- Existing solution: Solve these possible conflicts manually.
- Ideal solution: Have a single module for both ontology classification and rule inference.
- What if we want to combine non-monotonic features with classical logic?
 - Partial Solutions:
 - Answer set programming
 - Externally (through the use of appropriate rule engines)

Summary

- Horn logic is a subset of predicate logic that allows efficient reasoning, orthogonal to description logics
- Horn logic is the basis of monotonic rules
- DLP and SWRL are two important ways of combining OWL with Horn rules.
 - DLP is essentially the intersection of OWL and Horn logic
 - SWRL is a much richer language

Summary (2)

- Nonmonotonic rules are useful in situations where the available information is incomplete
- They are rules that may be overridden by contrary evidence
- Priorities are sometimes used to resolve some conflicts between rules
- Representation XML-like languages is straightforward