Introduction to the Semantic Web
Questions

• What is the Semantic Web?
• Why do we want it?
• How will we do it?
• Who will do it?
• When will it be done?
“XML is Lisp's bastard nephew, with uglier syntax and no semantics. Yet XML is poised to enable the creation of a Web of data that dwarfs anything since the Library at Alexandria.”

“The web has made people smarter. We need to understand how to use it to make machines smarter, too.”

-- Michael I. Jordan, paraphrased from a talk at AAAI, July 2002 by Michael Jordan (UC Berkeley)
“The Semantic Web will globalize KR, just as the WWW globalize hypertext”

-- Tim Berners-Lee
“The multi-agent systems paradigm and the web both emerged around 1990. One has succeeded beyond imagination and the other has not yet made it out of the lab.”

-- Anonymous, 2001
IOHO

• The web is like a universal acid, eating through and consuming everything it touches.
 - Web principles and technologies are equally good for wireless/pervasive computing

• The semantic web is our first serious attempt to provide semantics for XML sublanguages

• It will provide mechanisms for people and machines (agents, programs, web services) to come together.
 - In all kinds of networked environments: wired, wireless, ad hoc, wearable, etc.
Origins

Tim Berners-Lee’s original 1989 WWW proposal described a web of relationships among named objects unifying many info. management tasks.

Capsule history
- Guha’s MCF (~94)
- XML+MCF=>RDF (~96)
- RDF+OO=>RDFS (~99)
- RDFS+KR=>DAML+OIL (00)
- W3C’s SW activity (01)
- W3C’s OWL (03)

http://www.w3.org/History/1989/proposal.html
W3C’s Semantic Web Goals

Focus on machine consumption:

"The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation."

TBL’s semantic web vision
Semantic web stack 2006

- User Interface & applications
- Trust
- Proof
- Unifying Logic
- Query: SPARQL
- ontology: OWL
- Rules: RIF
- RDF-S
- Data interchange: RDF
- XML
- URI
- Unicode
- Crypto
Why is this hard?

after Frank van Harmelen and Jim Hendler
What a web page looks like to a machine...

after Frank van Harmelen and Jim Hendler
OK, so HTML is not helpful

Maybe we can tell the machine what the different parts of the text represent?

<table>
<thead>
<tr>
<th>Title</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Location</td>
</tr>
<tr>
<td>Abstract</td>
<td>Biosketch</td>
</tr>
<tr>
<td>Host</td>
<td></td>
</tr>
</tbody>
</table>
XML fans propose creating a XML tag set to use for each application.

For talks, we can choose `<title>`, `<speaker>`, etc.

after Frank van Harmelen and Jim Hendler
But, to your machine, the tags still look like this....

The tag names carry no meaning.

XML DTDs and Schemas have little or no semantics.

after Frank van Harmelen and Jim Hendler
XML Schema helps

XML Schemas provide a simple mechanism to define shared vocabularies.

after Frank van Harmelen and Jim Hendler
But there are many schemas
There’s no way to relate schema.

Either manually or automatically.

XML Schema is weak on semantics.
An Ontology level is needed

XML Ontology 256

Ontologies add
- Structure
- Constraints
- mappings

XML Ontology 42

We need a way to define ontologies in XML
So we can relate them
So machines can understand (to some degree) their meaning
Use Semantic Web Technology to publish shared data & knowledge

Semantic web technologies allow machines to share data and knowledge using common web language and protocols.

~ 1997
Use Semantic Web Technology to publish shared data & knowledge.

Data is interlinked to support integration and fusion of knowledge.

LOD beginning
Semantic Web => Linked Open Data

Use Semantic Web Technology to publish shared data & knowledge.

Data is inter-linked to support integration and fusion of knowledge.

LOD growing
Use Semantic Web Technology to publish shared data & knowledge.

Data is inter-linked to support integration and fusion of knowledge ... and growing.
Linked Open Data

Use Semantic Web Technology to publish shared data & knowledge

LOD is the new Cyc: a common source of background knowledge

Data is interlinked to support integration and fusion of knowledge

2010

...growing faster
Linked Open Data

Use Semantic Web Technology to publish shared data & knowledge

LOD is the new Cyc: a common source of background knowledge

Data is interlinked to support integration and fusion of knowledge

2011: 31B facts in 295 datasets interlinked by 504M assertions on ckan.net
Today and tomorrow

• Simple ontologies like FOAF & DC in use today
 - We’ve crawled more than 3M FOAF RDF files
• We hope to be able to make effective use of ontologies like Cyc in the coming decade
 - There are skeptics ...
 - It’s a great research topic ...
• The SW community has a roadmap and some experimental languages ...
• Industry is still holding back...
 - They are being conservative
• We need more experimentation and exploration