
SPARQL
An RDF Query Language

SPARQL
l SPARQL is a recursive acronym for

SPARQL Protocol And Rdf Query Language

l SPARQL is the SQL for RDF
l Example query suitable for DBpedia

find countries and their languages

PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT * WHERE {

?country a dbo:Country;
dbo:officialLanguage ?lang .

}
LIMIT 10

SPARQL History

l Several RDF query languages were developed
prior to SPARQL

l W3C RDF Data Access Working Group (DAWG)
worked out SPARQL 2005-2008

l Became a W3C recommendation in Jan 2008
l SPARQL 1.1 (2013) is the current standard
l Support for many prog. languages available
l W3 SPARQL 1.2 Community Group established

in 2019 to explore extensions

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/community/sparql-12/

Typical Architecture

SPARQL endpoint receives queries and requests via
HTTP from programs or GUIs, accesses associated
RDF triple store and returns result, e.g., data

Web
Browser

GUI

Program

RDF Triple
Store

SPARQL
endpoint

SPARQL
protocol

Rdf
modu

le

Some SPARQL endpoints

There are many public endpoints, e.g.
lDbpedia: https://dbpedia.ort/sparql/
lWikidata: https://query.wikidata.org/sparql
lDBLP: https://dblp.l3s.de/d2r/sparql

lSee W3C’s list of currently alive SPARQL
endpoints

It’s not hard to set up your own, e.g.
l UMBC cybersecurity knowledge graph:

http://eb4.cs.umbc.edu:9090/ckg/query/

https://dblp.l3s.de/d2r/sparql
https://www.w3.org/wiki/SparqlEndpoints

Endpoint GUIs

lSome endpoints offer their own SPARQL GUI
you can use to enter ad hoc queries

lThey may use the same URL as the REST
interface and rely on the protocol to know
when it’s a person and when a query
– Dbpedia: http://dbpedia.org/sparql/
– Wikidata: https://query.wikidata.org/
– DBLP: https://dblp.l3s.de/d2r/snorql/

http://dbpedia.org/sparql/
https://query.wikidata.org/
https://dblp.l3s.de/d2r/snorql/

General SPARQL GUIs

lYou can also access or run a general SPARQL
GUI that can talk to any SPARQL endpoint

lA nice example is YASGUI, which has a
public resource: https://yqagui.org/ and is
available to download

lAnother open-source GUI is Twinkle

https://yqagui.org/
https://doc.yasgui.org/
http://www.ldodds.com/projects/twinkle/

YASGUI: Yet Another SPARQL GUI

https://yasgui.org

SPARQL query structure
l Prefix declarations for

abbreviating URIs
l Dataset definition: what

RDF graph(s) are being
queried

l Result clause: what
information to return
from the query

l Query pattern: what to
query for in dataset

l Query modifiers, slicing,
ordering, rearranging
query results

prefix declarations
PREFIX ex: <http://example.com/rdf/> …

optional named graph source
FROM ...

result clause (select,ask,update…)
SELECT ...

query pattern
WHERE { ... }
query modifiers
ORDER BY ...
GROUP BY ….
LIMIT 100

Basic SPARQL Query Forms

lSELECT
Returns all, or a subset of, the variables bound in a
query pattern match

lASK
Returns boolean indicating whether a query pattern
matches or not

lDESCRIBE
Returns an RDF graph describing resources found

lCONSTRUCT
Returns an RDF graph constructed by substituting
variable bindings in a set of triple templates

SPARQL protocol parameters

lTo use this query, we need to know]
– What endpoint (URL) to send it to
– How we want the results encoded (JSON, XML, …)
– … other parameters …

lThese are set in GUI or your program
– Except for the endpoint, all have defaults

lCan even query with the unix curl command:
curl http://dbpedia.org/sparql/ --data-urlencode query='PREFIX yago:
<http://dbpedia.org/class/yago/> SELECT * WHERE {?city rdf:type
yago:WikicatCitiesInMaryland.}'

Exploring SPARQL with DBpedia

l DBpedia is a knowledge graph extracted from
different Wikipedia sites

l Started in 2007, it continued to develop and offer
services based on it

l Explore it in your browser in a human-readable form
l Query it using a public SPARQL endpoint to collect

data
l Use services like Dbpedia Spotlight to get entities and

concepts from text
l Download its data as JSON objects for your own use

Let’s find data about cities in MD

l We need to understand how DBpedia models data
about cites

l We can view the ontology with its ~700 classes and
~2,800 properties

l And/or examine familiar entities, like Baltimore by
– Doing a web search on dbpedia Baltimore
– Clicking on links in the resulting page

http://mappings.dbpedia.org/server/ontology/classes/
http://dbpedia.org/page/Baltimore

Baltimore in Dbpedia (1)

final URL part is Wikipedia name

Property value pairs for this subject

DBO: is used as the prefix for the DBpedia ontology

Baltimore in Dbpedia (2)

Scroll down to find the rdf:type
Property to see Baltimore’s
types

Baltimore in Dbpedia (3)

This looks like the type we want!

Note: yago provides an ontology
derived from Wikipedia with >
10M entities.

For example, it induces types from
Wikipedia category pages.

https://en.wikipedia.org/wiki/YAGO_(database)

A Query: Maryland Cities

find URIs for cities in Maryland
PREFIX yago: <http://dbpedia.org/class/yago/>
SELECT * WHERE {

?city a yago:WikicatCitiesInMaryland
}

http://dbpedia.org/class/yago/WikicatCitiesInMaryland

Maryland Cities and population

get cities in MD and their populations
PREFIX yago: <http://dbpedia.org/class/yago/>t
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT * WHERE {

?city a yago:WikicatCitiesInMaryland;
dbo:populationTotal ?population .

}

http://dbpedia.org/class/yago/
http://dbpedia.org/class/yago/WikicatCitiesInMaryland

Maryland cities, population, names

this returns names in multiple languages L
PREFIX yago: <http://dbpedia.org/class/yago/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?city ?name ?population WHERE {

?city a yago:WikicatCitiesInMaryland;
dbo:populationTotal ?population ;
rdfs:label ?name .

}

http://dbpedia.org/class/yago/
http://dbpedia.org/ontology/
http://dbpedia.org/class/yago/WikicatCitiesInMaryland

Just the @en names, w/o lang tag
FILTER gives conditions that must be true
LANG(x) returns string’s language tag or ””
STR(x) returns a string’s value, i.e. w/o language tag
PREFIX yago: <http://dbpedia.org/class/yago/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
select (str(?name) as ?name) ?population where {
?city a yago:WikicatCitiesInMaryland;

dbo:populationTotal ?population;
rdfs:label ?name .

FILTER (LANG(?name) = "en")
}

http://dbpedia.org/class/yago/
http://dbpedia.org/ontology/

Order results by population (descending)

sort results by population
PREFIX yago: http://dbpedia.org/class/yago/
PREFIX dbo: <http://dbpedia.org/ontology/>

select str(?name) ?population where {
?city a yago:WikicatCitiesInMaryland;

dbo:populationTotal ?population;
rdfs:label ?name .

FILTER (LANG(?name) = "en")
}
ORDER BY DESC(?population)

http://dbpedia.org/class/yago/

Wait, where’s Catonsville? L

lMD’s government focused on counties
lCatonsville not considered a city – it has no

government
lWe need another category of place

– Census designated place? Populated Place?
lPopulated places include counties & regions;

let’s use census designated place
lBut some ‘real’ cities in Maryland are not listed

as census designated places and some are

https://en.wikipedia.org/wiki/Census-designated_place
https://en.wikipedia.org/wiki/Human_settlement

UNION operator is OR
PREFIX yago: <http://dbpedia.org/class/yago/>
PREFIX dbo: http://dbpedia.org/ontology/
PREFIX dbr: <http://dbpedia.org/resource/>

SELECT str(?name) ?population where {
{?city dbo:type dbr:Census-designated_place;

dbo:isPartOf dbr:Maryland .}
UNION
{?city a yago:WikicatCitiesInMaryland . }
?city dbo:populationTotal ?population; rdfs:label ?name .
FILTER (LANG(?name) = "en")

}
ORDER BY DESC(?population)

http://dbpedia.org/class/yago/
http://dbpedia.org/ontology/

Now we have duplicate entries L

lThis happens because:
– Some “cities” are just in WikicatCitiesInMaryland
– Some are just in Census-designated_places
– Some are in both

lSPARQL’s procedure finds all ways to satisfy a query,
and for each one, records the variable bindings

lWe add DISTINCT to get SPARQL to remove
duplicate bindings from the results

DISTINCT produces unique results

PREFIX yago: <http://dbpedia.org/class/yago/>
PREFIX dbo: http://dbpedia.org/ontology/
PREFIX dbr: <http://dbpedia.org/resource/>
SELECT DISTINCT str(?name) ?population where {

{?city dbo:type dbr:Census-designated_place;
dbo:isPartOf dbr:Maryland .}

UNION
{?city a yago:WikicatCitiesInMaryland . }
?city dbo:populationTotal ?population;

rdfs:label ?name .
FILTER (LANG(?name) = "en")

}
ORDER BY DESC(?population)

http://dbpedia.org/class/yago/
http://dbpedia.org/ontology/

Some cities are missing L

lExperimentation with query showed there are
427 entities in MD that are either census
designated places or cities

lOnly get 411 because nine have no population
and one has neither a population nor a label
– Typical of a large and somewhat noisy knowledge

graph created from crowdsourced data
lSPARQL’s OPIONAL directive to the rescue

OPTIONAL handles missing data
PREFIX yago: <http://dbpedia.org/class/yago/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
select DISTINCT str(?name) ?population where {

{?city dbo:type dbr:Census-designated_place;
dbo:isPartOf dbr:Maryland .}

UNION
{?city a yago:WikicatCitiesInMaryland . }
OPTIONAL {?city dbo:populationTotal ?population.}
OPTIONAL {?city rdfs:label ?name . FILTER (LANG(?name) =

"en") }
}
ORDER BY DESC(?population)

http://dbpedia.org/class/yago/
http://dbpedia.org/ontology/

Handling queries with many results

l Endpoints typically have limits on a query’s runtime or
the number of results it can return

l You can use the LIMIT and OFFSET query modifiers to
manage large queries

l Suppose we want to find all types that DBpedia uses

SELECT distinct ?type WHERE {?x a ?type.}

lDBpedia’s public endpoint limits queries
to 10K results

Get the first 10K

Get the second 10K with OFFSET

A simple
program

gets
them all

from SPARQLWrapper import SPARQLWrapper, JSON
default_endpoint = "http://dbpedia.org/sparql"
type_query = """SELECT DISTINCT ?class WHERE {{?x a ?class}} LIMIT {LIM} OFFSET {OFF}"""
def getall(query, endpoint=default_endpoint):

limit = 10000
offset = total = 0
found = limit
tuples = []
sparql = SPARQLWrapper(endpoint)
sparql.setReturnFormat('json')
while found == limit: # keep going until we don't get limit results

q = query.format(LIM=limit, OFF=offset)
sparql.setQuery(q)
results = sparql.query().convert()
found = 0
for result in results["results"]["bindings"]:

found += 1
tuples.append(tuple([str(v['value']) for v in result.values()]))

print('Found', found, 'results')
total = total + found
offset = offset + limit

return tuples

ASK query

lAn ASK query returns True if it can be satisfied
and False if not

lWas Barack Obama born in the US?
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
ask WHERE {
{dbr:Barack_Obama dbo:birthPlace dbr:United_States}
UNION
{dbr:Barack_Obama dbo:birthPlace ?x .
?x dbo:isPartOf*/dbo:country dbr:United_States }

}

DESCRIBE Query

l “Describe ?x” means “tell me everything you
know about ?x

lExample: Describe Alan Turing …
DESCRIBE <http://dbpedia.org/resource/Alan_Turing>
-- or –
PREFIX dbr: <http://dbpedia.org/resource/>
DESCRIBE dbr:Alan_Turing

l Returns a collection of ~1500 triples in which
dbr:Alan_Turing is either the subject or object

Describes’s results?

lThe DAWG did not reach a consensus on what
describe should return

lPossibilities include
– All triples where the variable bindings are

mentioned
– All triples where the bindings are the subject
– Something else

lWhat is useful might depend on the application
or the amount of data involved

lSo it was left to the implementation

DESCRIBE Query (2)

lDescribe the film “Double Indemnity”
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dbo: <http://dbpedia.org/ontology/>
describe ?x WHERE {

?x a dbo:Film; foaf:name ?filmName .
FILTER (STR(?filmName) = "Double Indemnity")

}

l Returns a collection of ~500 triples

DESCRIBE Query (3)

lDescribe can return triples about
multiple entities

lDescribe films directed by Billy Wilder
PREFIX dbo: http://dbpedia.org/ontology/
PREFIX dbr: <http://dbpedia.org/resource/>
describe ?x WHERE {
?x a dbo:Film; dbo:director dbr:Billy_Wilder.

}

l Returns a collection of ~8400 triples about the
27 films he directed

http://dbpedia.org/ontology/

DESCRIBE Query (4)
lDescribe can return triples about

multiple entities, but you can limit
the number

lDescribe films directed by Billy Wilder
PREFIX dbo: http://dbpedia.org/ontology/
PREFIX dbr: <http://dbpedia.org/resource/>
describe ?x WHERE {
?x a dbo:Film; dbo:director dbr:Billy_Wilder.

} LIMIT 1

l Returns a collection of ~500 triples about just
one film, The Apartment.

http://dbpedia.org/ontology/

Construct query (1)

lConstruct queries return graphs as results, e.g.,
film directors and the actors they’ve directed
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX ex: <http://example.org/>
CONSTRUCT {?director ex:directed ?actor}
WHERE {?film a dbo:Film;

dbo:director ?director;
dbo:starring ?actor}

lReturns a graph with ~21,000 triples

On construct

lHaving a result form that produces an RDF
graph is a good idea

l It enables on to construct systems by using the
output of one SPARQL query as the data over
which another query works

lThis kind of capability was a powerful one for
relational databases

SPARQL 1.1
allows using
alternative
properties

separated by
vertical bar

Construct query (2)

lActors and directors or producers
they’ve worked for
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX ex: <http://example.org/>
Construct {?actor ex:workedFor ?directorOrProducer}
WHERE {
?film a dbo:Film;

dbo:director|dbo:producer ?directorOrProducer;
dbo:starring ?actor}

lReturns a graph with ~31,000 triples

Example: finding missing inverses

l DBpedia is missing many inverse relations, including
more than 10k missing spouse relations

l This creates a graph of all the missing ones, which can
be added back to the KG via UPDATE ADD

PREFIX dbo: <http://dbpedia.org/ontology/>
CONSTRUCT { ?p2 dbo:spouse ?p1. }
WHERE {?p1 dbo:spouse ?p2.

FILTER NOT EXISTS {?p2 dbo:spouse ?p1}}

lNot the NOT EXISTS operator that succeeds iff
its graph pattern is not satisfiable

RDF Named graphs

l Having multiple RDF graphs in a single
document/repository and naming them with URIs

l Provides useful additional functionality built on top of
the RDF Recommendations

l SPARQL queries can involve several graphs, a
background one and multiple named ones, e.g.:

SELECT ?who ?g ?mbox
FROM <http://example.org/dft.ttl>
FROM NAMED <http://example.org/alice>
FROM NAMED <http://example.org/bob>
WHERE
{ ?g dc:publisher ?who .

GRAPH ?g { ?x foaf:mbox ?mbox }
}

UPDATE QUERIES

l Simple insert
INSERT DATA { :book1 :title "A new book" ; :creator
"A.N.Other" . }

l Simple delete
DELETE DATA { :book1 dc:title "A new book" . }

l Combine the two for a modification, optionally guided
by the results of a graph pattern
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
DELETE { ?person foaf:givenName 'Bill’ }
INSERT { ?person foaf:givenName 'William’ }
WHERE { ?person foaf:givenName 'Bill' }

Aggregation Operators

lSPARQL 1.1 added many aggregation
operators, like count, min, max, …

lGenerally used in the results specification
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT (COUNT(?film) AS ?numberOfFilms)

WHERE {?film a dbo:Film .}

lThis finds 129,980 films

Group by

lGROUP BY breaks the query's result set into
groups before applying the aggregate functions

lFind BO’s properties and group them by
property and find the number in each group
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT ?p (COUNT(?p) as ?number)
WHERE { dbr:Barack_Obama ?p ?o }
GROUP BY ?p ORDER BY DESC(count(?p))

Inference via SPARQL

This query adds inverse spouse relations that don’t
already exist:

PREFIX dbo: <http://dbpedia.org/ontology/>
INSERT { ?p2 dbo:spouse ?p1. }
WHERE {?p1 dbo:spouse ?p2.

FILTER NOT EXISTS {?p2 dbo:spouse ?p1}}
l SPIN and SHACL are systems to represent simple

constraint & inference rules that are done by sparql
l A big feature is that the rules are represented in the

graph

http://spinrdf.org/
https://www.w3.org/TR/shacl/

lSPARQ 1.1 added many more
features …
– Subqueries
– Negation: MINUS
– Federated queries that access multiple endpoints

lData you want to extract from an RDF graph
can probably be returned by one query
– Might be a complicated one, though …

lSearch web for SPARQL tricks or this book

SPARQL 1.1 Additions

