
Practical
Knowledge Graph

Example
Protege,

Stardog and
Peeps

Today’s exercise

1. Look at a simple ontology for information
about people and their relations in Protégé

2. Look at some instance data in Protégé
3. Run the DL and rule reasoner in Protégé
4. Load the ontology and data into Stardog
5. Browse and query the resulting knowledge

graph in Stardog

Preliminaries

lOn your own computer (Windows, Mac, Linux)
– Download and install Protégé
– Download, install and configure the

community edition of Stardog 5
– Clone the 691 peeps repository

http://protegeproject.github.io/protege/
https://www.stardog.com/docs/
https://github.com/UMBC-CMSC-491-691-F18-Knowledge-Graphs/peeps

Peeps files

lThe peeps repo has five files
– README.md
– catalog-v001.xml – protégé config file
– load_peeps.sh – bash script to load peeps into stardog
– mypeeps.ttl – data encoded using peeps ontology
– peeps.ttl – the peeps ontology
– prefixes.ttl – list of prefixes, used by stardog’s query

component

Separate ontology and data?

lAn ontology is a knowledge graph schema
– peeps:Man owl:disjointWith peeps:Woman .

lWe talk about populating it with instance data
– :janeDoe a peeps:Woman; foaf:givenName “Jane” .

lGood practice for real applications is to keep
the ontology and data separate
– i.e., in different files

lHence, peeps.ttl and mypeeps.ttl

Why separate ontology and data?

l It really depends on the usecase
lSome facts are part of an ontology if they’re

important, unchanging knowledge
lMaybe the ontology is a one-off, and will never

be used with any other data
lMaybe you added data while developing the

ontology for testing and debugging
lBut many ontologies are intended for reuse or

to represent datasets that change frequently

https://en.wiktionary.org/wiki/one-off

Namespaces

lPromoting reuse also entails giving the
ontology and a knowledge graph that uses it
with data different namespaces

lNamespace = uri = unique identifier
lExample

– http://dbpedia.org/resource/
– http://dbpedia.org/ontology/

lBTW, lookup prefixes at http://prefix.cc
l Ideally, the uris are ones you control and no

one else will use

http://dbpedia.org/resource/
http://dbpedia.org/ontology/
http://prefix.cc/

Namespace best practice

l Ideally, the namespace should resolve to a file
containing the ontology or data
– Maybe not the data if it’s big or proprietary

lEnables other ontologies to import and use
yours just from its URI

l If you don’t control a long-lived URI …
– You might use a file on github
– You might use purl to create a “permanent

url” that redirects to the current location

http://purl.org/

Peeps.ttl in Protégé

Mypeeps.ttl

When to import an ontology

l In Protégé, we import an ontology if we want a
reasoner to understand its vocabulary

l It does not add the ontology to the file that will
be saved

lPlus: the knowledge may be important or
essential in testing

lMinus: big ontologies may add a lot of useless
data

lHere mypeeps.ttl imports peeps, but not foaf
or schema

Stardog Graph Platform

Stardog Graph Platform

lStardog is easy to install and use, but rich in
features

l It has a Web interface, good command-line
tools and a Java API

lWe’ll look at how to
– Load the peeps example files
– Browse the results
– Query the graph via the Web console

Start Stardog

lThis command will start Stardog listening to its
default port (5820) and disable security

stardog-admin server start --disable-security

lEnter the URL http://localhost:5820 to access
the Web console
Use admin for bothe the user and password

http://localhost:5820/

Stardog script

l load_peeps.sh is a bash script for loading the
peeps data and ontology

lUse variations for other systems or shells
lOnce loaded go to http://localhost:5820/ to

use Stardog’s web interface

http://localhost:5820/

Stardog’s web interface

Create a database

Name it mypeeps and accept the defaults

Click on data and select +Add

Add the files
•peeps.ttl
•mypeeps.ttl

Go to Browse to explore the graph

Go to Query to enter a SPARQL query

The query

select * where {?person foaf:givenName ?name}

Finds variable assignments that satisfy the where
clause

Go to Query to enter a SPARQL query

It found four solutions. The data can be
exported to your computer as a file in any of
several formats (e.g., rdf, json, csv, tsv)

The query systems needs to know (independently)
about any namespace prefixes you want to use
(other than the common ones). Enter these when
you create the database.

Command line commands

Running a simple bash script will create or
refresh the peeps knowledge graph example

#!/bin/bash
loads peeps.ttl, mypeeps.ttl and associated namespaces into a Stardog database.

PORT="5820"
SERVER="http://localhost:$PORT"
DBNAME="mypeeps"
DBURL="$SERVER/$DBNAME"

stop server in case one is already running
stardog-admin --server $SERVER server stop
start server
stardog-admin server start --port $PORT --disable-security
drop database $DBNAME in case it exists already
stardog-admin --server $SERVER db drop -n $DBNAME
create database $DBNAME with reasoning and search enabled
stardog-admin --server $SERVER db create -o reasoning.sameas=FULL -o search.enabled=true -n $DBNAME
load ontology and data
stardog data add $DBURL peeps.ttl mypeeps.ttl
add namespace prefixes for the query system to use
stardog namespace import --verbose $DBURL prefixes.ttl

https://raw.githubusercontent.com/UMBC-CMSC-491-691-F18-Knowledge-Graphs/peeps/master/load_peeps.sh

Query from Python

lStardog serves as a endpoint for SPARQL
queries

lUse this URL to send queries to the mypeeps
database
http://localhost:5820/mypeeps/query/

lThere are packages that help do this in many
languages, including Python

lSee query.py in the peeps repository

http://localhost:5820/mypeeps/query/
https://github.com/UMBC-CMSC-491-691-F18-Knowledge-Graphs/peeps/blob/master/query.py

