
Chapter 4
OWL

Based on slides from Grigoris Antoniou and Frank van Harmelen

TL;DR: What is OWL

OWL uses the syntax of RDF but defines
new classes and properties, making it more
expressive as knowledge representation
language

Outline

1. A bit of history
2. Basic Ideas of OWL
3. The OWL Language
4. Examples
5. The OWL Namespace
6. OWL 2

A Brief History of OWL

l Builds on RDF to “represent rich and complex
knowledge about things, groups of things, and relations
between things”

l Draws on decades of experience with systems for
representing and reasoning with knowledge

l Based on a 2001 DAML+OIL specification
l OWL became a W3C recommendation in 2004,

extended as OWL2 in 2009
l Well defined RDF/XML serializations
l Formal semantics based on first order logic
l Good tools, both opensource and commercial

Joint EU/US Committee

DAML

OntoKnowledge+Others

The OWL Family Tree

Frames

Description
Logic

RDF/RDF(S)

OIL

DAML-ONT

DAML+OIL OWL
W3C

SHOE

Logic Programming
1970s

1980s

1974

~2002

2004
~2000

1996

~2000

Klone1980

Outline

1. A bit of history
2. Basic Ideas of OWL
3. The OWL Language
4. Examples
5. The OWL Namespace
6. OWL 2

Ontology and Data

lPhilosophy: Ontologies are models of what
exists in the world (kinds of things, relations,
events, properties, etc.)
– Information systems: a schema for info. or data
– KR languages: model of classes & relations/properties

& associated axioms, e.g., subPropertyOf is transitive

lData is information about individual instances
expressed with terms in the ontology
– Some instances might be considered part of the

ontology (e.g., God, George Washington, Baltimore)

https://en.wikipedia.org/wiki/Ontology

Requirements for Ontology Languages

l Ontology languages let users write explicit,
formal conceptualizations of domain models

l Requirements:
– well-defined syntax
– efficient reasoning support
– formal semantics
– sufficient expressive power
– convenience of expression

Expressive Power vs. Efficient Reasoning

l Always a tradeoff between expressive power
and efficient reasoning support

l The richer the language, the more inefficient the
reasoning support becomes (in general)

l Reasoning can be undecidable or semi-decidable
and even if decidable can be exponentially hard

l We need a compromise between:
– Language supported by reasonably efficient reasoners
– Language that can express large classes of ontologies

and knowledge

https://en.wikipedia.org/wiki/Undecidable_problem

Kinds of Reasoning about Knowledge

l Class membership
If x is an instance of a class C, and C is a subclass of D, then we
can infer that x is an instance of D

l Equivalence of classes
If class A is equivalent to class B, and class B is equivalent to
class C, then A is equivalent to C, too

l Consistency
– X is an instance of classes A and B, but A and B are disjoint
– This is an indication of an error in the ontology or data

l Classification
Certain property-value pairs are a sufficient condition for
membership in a class A; if an individual x satisfies such
conditions, we conclude that x must be an instance of A

Uses for Reasoning

l Reasoning support is important for
– Deriving new relations and properties
– Automatically classifying instances in classes
– Checking consistency of ontology and knowledge
– checking for unintended relationships between

classes

l Checks like these are valuable for
– designing large ontologies, where multiple authors are

involved
– integrating and sharing ontologies from various

sources

Reasoning Support for OWL

l Semantics is a prerequisite for reasoning
support

l Formal semantics and reasoning support usually
provided by
– mapping an ontology language to known logical

formalism
– using automated reasoners that already exist for

those formalisms

l OWL is (partially) mapped to a description logic
DLs are a subset of logic for which efficient reasoning
support is possible

RDFS’s Expressive Power Limitations

l Local scope of properties
– rdfs:range defines range of a property (e.g.,

eats) for all instances of a class
– In RDF Schema we can’t declare range

restrictions that apply to only some
– E.g., animals eat living_things but cows only

eat plants
– :eat rdfs:domain :animal; range :living_thing

:eat rdfs:domain :cow; range :plant

RDFS’s Expressive Power Limitations

l Disjointness of classes
– Sometimes we wish to say that classes are disjoint

(e.g. male and female)

l Boolean combinations of classes
– We may want to define new classes by combining

other classes using union, intersection, and
complement

– E.g., person equals union of male and female classes
– E.g., weekdays equals set {:Monday, … :Sunday}

RDFS’s Expressive Power Limitations

l Cardinality restrictions
– E.g., a person has exactly two parents, a course is

taught by at least one lecturer

l Special characteristics of properties
– Transitive property (like hasAncestor)
– Unique property (like hasMother)
– A property is the inverse of another property (like

eats and eatenBy

Combining OWL with RDF Schema

l Ideally, OWL would extend RDF Schema
Consistent with the layered architecture of the
Semantic Web

l But simply extending RDF Schema works
against obtaining expressive power and
efficient reasoning
Combining RDF Schema with logic leads to
uncontrollable computational properties

l OWL uses RDF and most of RDFS

Three Species of OWL 1

l W3C’sWeb Ontology Working Group defined
OWL as three different sublanguages:
– OWL Full
– OWL DL (DL for Description Logic)
– OWL Lite

l Each sublanguage geared toward fulfilling
different aspects of requirements

OWL Full

l It uses all the OWL languages primitives
l It allows the combination of these primitives in

arbitrary ways with RDF and RDF Schema
l OWL Full is fully upward-compatible with RDF,

both syntactically and semantically
l OWL Full is so powerful that its reasoning is

undecidable

Soundness and completeness

lA sound reasoner only makes conclusions that
logically follow from the input, i.e., all of its
conclusions are correct
– We typically require our reasoners to be sound

lA complete reasoner can make all conclusions
that logically follow from the input
– We cannot guarantee complete reasoners for full

FOL and many subsets
– So, we can’t do it for OWL Full

OWL DL

l OWL DL (Description Logic) is a sublanguage of
OWL Full that restricts application of the
constructors from OWL and RDF

– Application of OWL’s constructors to each other is
disallowed

– It corresponds to a well studied description logic

l OWL DL permits efficient reasoning support
l But we lose full compatibility with RDF

– Not every RDF document is a legal OWL DL document
– Every legal OWL DL document is a legal RDF document

OWL Lite

l An even further restriction limits OWL DL to a
subset of the language constructors
– E.g., OWL Lite excludes enumerated classes,

disjointness statements, and arbitrary cardinality

l The advantage of this is a language that is
easier to
– grasp, for users
– implement, for tool builders

l The disadvantage is restricted expressivity

OWL Compatibility with RDF Schema

l All varieties of OWL use
RDF for their syntax

l Instances are declared
as in RDF, using RDF
descriptions

l OWL constructors are
specializations of their
RDF counterparts

l OWL classes and
properties have
additional constraints

rdfs:Resource

rdfs:Class

owl:DatatypeProperty

owl:ObjectProperty

rdf:Property

owl:Class

Outline

1. A bit of history
2. Basic Ideas of OWL
3. The OWL Language
4. Examples
5. The OWL Namespace
6. Future Extensions

OWL Syntactic Varieties

l OWL builds on RDF and uses RDF’s
serializations

l Other syntactic forms for OWL have also
been defined:

– Alternative, more readable serializations
– These are often used in ontology editing

tools, like Protege

OWL XML/RDF Syntax: Header in Turtle

@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/ XLMSchema#> .

l OWL documents are RDF documents

l and start with a typical declaration of
namespaces

l W3C owl recommendation has the namespace
http://www.w3.org/2002/07/owl#"

http://www.w3.org/2002/07/owl
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema

owl:Ontology
<> a owl:Ontology ;
rdfs:comment "Example OWL ontology" ;
owl:priorVersion <http://example.org/uni-ns-old> ;
owl:imports <http://example.org/persons> ;
rdfs:label "University Ontology" .

l owl:imports, a transitive property, indicates that
the document commits to all of the terms as
defined in its target

l owl:priorVersion points to an earlier version of
this document

OWL Classes

:AssociateProfessor a owl:Class ;
owl:disjointWith (:Professor :AssistantProfessor) .

lClasses are defined using owl:Class
– owl:Class is a subclass of rdfs:Class

lOwl:Class is disjoint with datatypes (aka literals)
lDisjointness is defined using owl:disjointWith

– Two disjoint classes are can share no instances

Another Example

:Man rdfs:subClassOf foaf:Person .
:Woman rdfs:subClassOf foaf:Person .
:Man owl:disjointWith :Woman .

Questions:
l Is :Man an rdfs:Class or a owl:Class?
l Why don’t we need to assert that :Man is some kind of

class?
l Do we need to assert the disjointness both ways?
l What happens of we assert :pat a :Man; a :Woman?

Protégé

https://protege.stanford.edu/

StarDog

https://www.stardog.com/

OWL Classes
:Faculty a owl:Class;

owl:equivalentClass :AcademicStaffMember .

lowl:equivalentClass asserts two classes are
equivalent

–Each must have the same members

lowl:Thing is the most general class, which
contains everything
– i.e., every owl class is rdfs:subClassOf owl:Thing

lowl:Nothing is the empty class
– i.e., owl:NoThing is rdfs:subClassOf every owl class

OWL Properties

l OWL has two kinds of properties
l Object properties relate objects to other objects

– owl:ObjectProperty, e.g. isTaughtBy,
supervises

l Data type properties relate objects to datatype
values
– owl:DatatypeProperty, e.g. phone, title, age, …

lThese were made separate to make it easier to
implement sound and complete reasoners

Datatype Properties

lOWL uses XML Schema data types, exploiting
the layered architecture of the Semantic Web

:age a owl:DatatypeProperty;
rdfs:domain foaf:Person;
rdfs:range xsd:nonNegativeInteger .

OWL Object Properties

Typically user-defined data types

:isTaughtBy a owl:ObjectProperty;
rdfs:domain :Course;
rdfs:range :AcademicStaffMember;
rdfs:subPropertyOf :involves .

Inverse Properties

:teaches a owl:ObjectProperty;
rdfs:range :Course;
rdfs:domain :AcademicStaffMember;
owl:inverseOf :isTaughtBy .

Or just

:teaches owl:inverseOf :isTaughtBy .
A partial list of axioms:

owl:inverseOf rdfs:domain owl:ObjectProperty;
rdfs:range owl:ObjectProperty;
a owl:SymmetricProperty.

{?P owl:inverseOf ?Q. ?S ?P ?O} => {?O ?Q ?S}.
{?P owl:inverseOf ?Q. ?P rdfs:domain ?C} => {?Q rdfs:range ?C}.
{?A owl:inverseOf ?C. ?B owl:inverseOf ?C} => {?A rdfs:subPropertyOf ?B}.

Equivalent Properties

:lecturesIn owl:equivalentProperty :teaches .
l Two properties have the same extension

– Intention vs. extension
– Extension of a property is all of the subject-object

pairs it holds between

l Axioms
{ ?A rdfs:subPropertyOf ?B.

?B rdfs:subPropertyOf ?A.}
<=> {?A owl:equivalentProperty ?B.}.

https://en.wikipedia.org/wiki/Extension_(semantics)

Property Restrictions

lDeclare that class C satisfies certain conditions
– All instances of C satisfy the conditions

lEquivalent to: C is subclass of a class C', where
C' collects all objects that satisfy the
conditions (C' can remain anonymous)

lExample:
– People whose sex is male and have at least one child

whose sex is female and whose age is six
– Things with exactly two arms and two legs

Property Restrictions

lowl:Restriction element describes such a class
lElement has an owl:onProperty element and one

or more restriction declarations
lOne type defines cardinality restrictions

A Parent must have at least one child
:Parent rdfs:subClassOf

[a owl:Restriction;
owl:onProperty :hasChild;
owl:minCardinalityQ "1"] .

Property Restrictions

l This statement defines Parent as any
Person who has at least one child

:Parent owl:equivalentClass
owl:intersectionOf (:Person

[a owl:Restriction;
owl:onProperty :hasChild;
owl:minCardinalityQ "1”])

lNote the Turtle syntax
:C1 owl:intersectionOf (:C2 :C3 :C4) .

Property Restrictions

Other restriction types defines constraints on
the kinds of values the property may take

– owl:allValuesFrom specifies universal
quantification

– owl:hasValue specifies a specific value
– owl:someValuesFrom specifies existential

quantification

owl:allValuesFrom

lDescribe a class where all of the values of a
property match some requirement

lE.g., Math courses taught by professors:

[a :mathCourse,
[a owl:Restriction;
owl:onProperty :isTaughtBy;
owl:allValuesFrom :Professor]].

Offspring of people are people

:Person a owl:Class,
rdfs:subClassOf

[a owl:Restriction;
owl:onProperty bio:offspring;
owl:allValuesFrom :Person] .

Offspring of people are people

:Person a owl:Class,
rdfs:subClassOf

[a owl:Restriction;
owl:onProperty bio:offspring;
owl:allValuesFrom :Person] .

“The class of things, all of whose offspring are
people”

:Person things, all of
whose offspring
are people

Offspring of people are people

:Person a owl:Class;
rdfs:subClassOf

[a owl:Restriction;
owl:allValuesFrom :Person;
owl:onProperty bio:offspring] .

:john a :Person; bio:offspring :mary

What follows?
:Person rdfs:subClassOf

[owl:allValuesFrom :Person;
owl:onProperty bio:offspring] .

???
:bio:offspring rdfs:domain :animal;

rdfs:range :animal.
???
:alice a foaf:Person;

bio:offspring :bob.
???
:carol a foaf:Person.
:don bio:offspring :carol.
???

“people
give birth to
people”

What follows?

:Person rdfs:subClassOf
[owl:allValuesFrom :Person;
owl:onProperty bio:sprungFrom] .

bio:sprungFrom rdfs:domain :animal;
rdfs:range :animal;
owl:inverse bio:offspring.

:carol a foaf:Person.
:don bio:offspring :carol.
???

“people are
born of
people”

owl:hasValue

l Describe a class with a particular value for a property
l E.g., Math courses taught by Professor Longhair
Math courses taught by :longhair
[rdfs:subclassOf :mathCourse;
[a owl:restriction;

owl:onProperty :isTaughtBy;
owl:hasValue :longhair] .

Questions:
l Does this say all math courses are taught by :longhair?
l Does it say that there are some courses taught by :longhair?
l Can all classes, however defined, be paraphrased by a noun

phrase in English?

A typical example

:Male owl:equivalentClass
owl:intersectionOf
(:Person,

[a owl:Restriction;
owl:onProperty :sex;
owl:hasValue "male"]).

A typical example

:Man owl:equivalentClass
owl:intersectionOf
(:Person,

[a owl:Restriction;
owl:onProperty :sex;
owl:hasValue "male"]).

:Person

:sex == “male”

:Man

Classes are sets in OWL

What follows?

:ed a :Man .

???

:frank a foaf:Person; :sex "male".

???

:pat a foaf:Person; :sex "male"; :sex "female" .

???

owl:someValuesFrom

l Describe class requiring it to have at least one
value for a property matching a description

l E.g., Academic staff members who teach an
undergraduate course

[a :academicStaffMember;
a [owl:onProperty :teaches;

owl:someValuesFrom :undergraduateCourse]]

Cardinality Restrictions

lWe can specify minimum and maximum number
using owl:minCardinality & owl:maxCardinality
– Courses with fewer than 10 students
– Courses with between 10 and 100 students
– Courses with more than 100 students

lCan specify a precise number by using the same
minimum and maximum number
– Courses with exactly seven students

lFor convenience, OWL offers also owl:cardinality
– E.g., exactly N

Cardinality Restrictions

E.g. courses taught be at least two people

[a owl:Restriction;

owl:onProperty :isTaughtBy;

owl:minCardinality
“2”^^xsd;nonNegativeInteger] .

What does this say?

:Parent owl:equivalentClass
[a owl:Restriction;
owl:onProperty :hasChild;
owl:minCardinality “1”^^xsd:integer] .

Questions:
lMust parents be humans?
lMust their children be humans?

Definition of a parent

The parent class is equivalent to the class of
things that have at least one child

All(x): Parent(x) ó Exisits(y) hasChild(x, y)

If hasChild is defined as having Person as it’s
domain, then Parents are also people.

Special Properties
lowl:TransitiveProperty (transitive property)

– E.g. “has better grade than”, “is ancestor of”

lowl:SymmetricProperty (symmetry)
– E.g. “has same grade as”, “is sibling of”

lowl:FunctionalProperty defines a property that has
at most one value for each object

– E.g. “age”, “height”, “directSupervisor”

lowl:InverseFunctionalProperty defines a property
for which two different subjects cannot have the
same value

– e.g., “ssn”, “mobile phone number”

Boolean Combinations

lWe can combine classes using Boolean
operations (union, intersection, complement)

lNegation is introduced by the complementOf,
e.g., courses not taught be staffMembers

[a :course,
owl:Restriction;

owl:onProperty :taughtBy;
owl:allValuesFrom [a owl:Class;

owl:complementOf :staffMember]
] .

Boolean Combinations

l The new class is not a subclass of the union, but
rather equal to the union
– We have stated an equivalence of classes

l E.g., university people is the union of
staffMembers and Students

:peopleAtUni
owl:equivalentClass

owl:unionOf (:staffMember :student) .

Boolean Combinations

E.g., CS faculty is the intersection of faculty and
things that belongTo the CS Department.

:facultyInCS owl:equivalentClass
owl:intersectionOf

(:faculty
[a owl:Restriction;

owl:onProperty :belongsTo;
owl:hasValue :CSDepartment]

) .

Nesting of Boolean Operators

E.g., administrative staff are staff members who are not
faculty or technical staff members

:adminStaff owl:equivalentClass

owl:intersectionOf

(:staffMember

[a owl:Class;

owl:complementOf [a owl:Class;

owl:equivalentClass

owl:unionOf (:faculty :techSupportStaff)]])

SM

F TS

Enumerations with owl:oneOf

lE.g., a thing that is either Monday, Tuesday, …

[a owl:Class;
owl:oneOf (:Monday

:Tuesday
:Wednesday
:Thursday
:Friday
:Saturday
:Sunday)]

Declaring Instances

Instances of OWL classes are declared as in RDF

:john
a :academicStaffMember;
uni:age 39^^xsd:integer .

No Unique-Names Assumption

lOWL does not adopt the unique-names
assumption of database systems
– That two instances have a different name or ID

does not imply that they are different individuals

lSuppose we state that each course is taught
by at most one staff member, and that a
given course is taught by #949318 and is taught
by #949352
– An OWL reasoner does not flag an error
– Instead it infers that the two resources are equal

Distinct Objects

To ensure that different individuals are
recognized as such, we must explicitly
assert their inequality:

:john owl:differentFrom :mary .

Distinct Objects

OWL provides a shorthand notation to assert the
pairwise inequality of all individuals in a given list

[a owl:allDifferent;
owl:distinctMembers (:alice :bob :carol :don)].

Data Types in OWL

lXML Schema provides a mechanism to
construct user-defined data types
– E.g., the data type of adultAge includes all

integers greater than 18

lSuch derived data types can’t be used in OWL
– The OWL reference document lists all the XML

Schema data types that can be used
– These include the most frequently used types such

as string, integer, Boolean, time, and date.

Inferring Distinctness
An ontology may provide many ways to infer that individ-
uals as distinct from what’s known about them, e.g. they
lBelong to sets known to be disjoint (e.g., :Man, :Woman)

:pat1 a :man. :pat2 a :woman. :Man owl:disjointWith :Woman.
lHave inverse functional properties with different values

:pat1 :ssn “249148660” . :pat2 :ssn “482962271” .
:ssn a owl:InverseFunctionalProperty .

lHave different values for a functional property
:pat1 :ssn “249148660” . :pat2 :ssn “482962271” .
:ssn a owl:FunctionalProperty .

l Are connected with an irreflexive relation
:pat1 :hasChild :pat2. :hasChild a owl:IrreflexiveProperty .

Combination of Features in OWL Profiles

lDifferent OWL profiles have different sets of
restrictions regarding the application of
features

lIn OWL Full, all the language constructors may
be used in any combination as long as the
result is legal RDF

lOWL DL removes or restricts some features to
ensure that complete reasoning is tractable or
to make reasoning implementations easier

Restriction of Features in OWL DL

lVocabulary partitioning
Any resource is allowed to be only a class, a data
type, a data type property, an object property, an
individual, a data value, or part of the built-in
vocabulary, and not more than one of these

lExplicit typing
The partitioning of all resources must be stated
explicitly (e.g., a class must be declared if used in
conjunction with rdfs:subClassOf)

Restriction of Features in OWL DL

lProperty Separation
– The set of object properties and data type

properties are disjoint
– Therefore the following can never be

specified for data type properties:
lowl:inverseOf
lowl:FunctionalProperty
lowl:InverseFunctionalProperty
lowl:SymmetricProperty

Restriction of Features in OWL DL

lNo transitive cardinality restrictions
– No cardinality restrictions may be placed on

transitive properties
– e.g., people with more than 5 descendants

lRestricted anonymous classes
Anonymous classes are only allowed to occur as:
– the domain and range of either

owl:equivalentClass or owl:disjointWith
– the range (but not the domain) of

rdfs:subClassOf

Restriction of Features in OWL Lite

l Restrictions of OWL DL and more
l owl:oneOf, owl:disjointWith, owl:unionOf,

owl:complementOf, owl:hasValue not allowed
l Cardinality statements (minimal, maximal, exact

cardinality) can only be made on values 0 or 1
l owl:equivalentClass statements can no longer

be made between anonymous classes but only
between class identifiers

African Wildlife Ontology

lAn small example using OWL for an ontology of
African animals and plants

lUsed in 2nd edition of the Semantic Web Primer
lUsed by Maria Keet for her course and book An

Introduction to Ontology Engineering
lSee her recent article, The African Wildlife

Ontology tutorial ontologies: requirements,
design, and content

lSee

https://people.cs.uct.ac.za/~mkeet/OEbook/
https://arxiv.org/abs/1905.09519

African Wildlife Ontology

African Wildlife Ontology: Classes

See awo1.ttl

https://github.com/UMBC-CMSC-491-691-F19-Knowledge-Graphs/class_material/blob/master/examples/owl_examples/africanWildlife/awo1.ttl

African Wildlife Ontology: Classes

:animal owl:disjointWith :plant .

:herbivore rsds:subClassOf :animal;
owl:disjointWith :carnivore .

:giraffe rdfs:subClassOf :herbivore .

:carnivore rdfs:subClassOf :animal .
:lion rdfs:subClassOf :carnivore .

Branches are parts of trees

African Wildlife: Properties

e.g, hand part of arm, arm part of body
:isPartOf a owl:TransitiveProperty .

only animals eat things
:eats :domain :animal.

the inverse of :eats in :eatenBy
:eats owl:inverseOf :eatenBy.

An African Wildlife: Branches

plants and animals are disjoint
:plant owl:disjointWith :animal

trees are plants
:tree rdfs:subClassOf :plant

branches are only parts of trees
:branch rdfs:subClassOf

[a owl:Restriction;
owl:allValuesFrom :tree
owl:onProperty :isPartOf]

African Wildlife: Leaves

leaves are only parts of branches
:leaf rdfs:subClassOf

[a owl:Restriction;
owl:allValuesFrom :branch
owl:onProperty :isPartOf]

African Wildlife: Carnivores

carnivores are exactly those animals
that eat animals
:Carnivore owl:intersectionOf

(:Animal,
[a owl:Restriction;

owl:someValuesFrom :Animal
owl:onProperty :eats]

) .

Can carnivores
eat plants?

African Wildlife: Herbivores

How can we define Herbivores?

African Wildlife: Herbivores

Here is a start

:herbivore a owl:Class;
rdfs:comment "Herbivores are exactly those

animals that eat only plants or parts of
plants” .

African Wildlife: Herbivores

:Herbivore owl:equivalentClass
[a owl:Class;
owl:intersectionOf
(:Animal
[a owl:Restriction
owl:onProperty :eats;
owl:allValuesFrom
[a owl:Class;
owl:equivalentClass
owl:unionOf
(:Plant
[a owl:Restriction;
owl:onProperty :isPartOf;
owl:allValuesFrom :Plant])]])]

African Wildlife: Giraffes

giraffes are herbivores, and eat only leaves
Giraffe rdfs:subClassOf

:Herbavore,
[owl:Restriction

owl:onProperty :eats;
owl:allValues:From :Leaf] .

African Wildlife: Lions
Lions are animals that eat only herbivores

:lion rdfs:subClassOf
:Carnivore,
[a Restriction

owl:onProperty :eats;
owl:allValuesFrom :Herbavore] .

African Wildlife: Tasty Plants

#tasty plants are eaten both by herbivores & carnivores

???????????????

African Wildlife: Tasty Plants

#tasty plants are eaten both by herbivores & carnivores
:TastyPlant

rdfs:subClassOf
:Plant,
[a Restriction

owl:onProperty :eatenBy;
owl:someValuesFrom :Herbavore],

[a Restriction
owl:onProperty :eatenBy;
owl:someValuesFrom :Carnivore .]

Outline

1. A bit of history
2. Basic Ideas of OWL
3. The OWL Language
4. Examples
5. The OWL Namespace
6. OWL 2

Extensions of OWL

l Modules and Imports
l Defaults
l Closed World Assumption
l Unique Names Assumption
l Procedural Attachments
l Rules for Property Chaining

Modules and Imports

l The importing facility of OWL is very trivial:
– It only allows importing of an entire

ontology, not parts of it
l Modules in programming languages based on

information hiding: state functionality, hide
implementation details
– Open question how to define appropriate

module mechanism for Web ontology
languages

Defaults

l Many practical knowledge representation
systems allow inherited values to be
overridden by more specific classes in the
hierarchy
– treat inherited values as defaults

l No consensus has been reached on the right
formalization for the nonmonotonic behaviour
of default values

Closed World Assumption

l OWL currently adopts the open-world
assumption:
– A statement cannot be assumed true on the basis

of a failure to prove it
– On the huge and only partially knowable WWW,

this is a correct assumption

l Closed-world assumption: a statement is true
when its negation cannot be proved
– tied to the notion of defaults, leads to

nonmonotonic behaviour

Unique Names Assumption

l Typical database applications assume that
individuals with different names are indeed
different individuals

l OWL follows the usual logical paradigm where
this is not the case
– Plausible on the WWW

l One may want to indicate portions of the
ontology for which the assumption does or
does not hold

Procedural Attachments

l A common concept in knowledge
representation is to define the meaning of a
term by attaching a piece of code to be
executed for computing the meaning of the
term
– Not through explicit definitions in the language

l Although widely used, this concept does not
lend itself very well to integration in a
system with a formal semantics, and it has
not been included in OWL

Rules for Property Chaining

l OWL does not allow the composition of
properties for reasons of decidability

l In many applications this is a useful
operation

l One may want to define properties as
general rules (Horn or otherwise) over other
properties

l Integration of rule-based knowledge
representation and DL-style knowledge
representation is an area of research

OWL 2 adds
l Qualified cardinality

– A hand has five digits, one of which is a thumb and four of
which are fingers

l Stronger datatype/range support
l Additional property characteristics

– E.g., reflexivity

l Role chains
– E.g., hasParent.hasSibling.hasChild

l A better defined model for punning within DL
– Allows a term to name both a concept and an individual

l More powerful annotations

Conclusions

l OWL is the proposed standard for Web ontologies
l OWL builds upon RDF and RDF Schema:

– (XML-based) RDF syntax is used
– Instances are defined using RDF descriptions
– Most RDFS modelling primitives are used

l Formal semantics and reasoning support is provided
through the mapping of OWL on logics
– Predicate logic and description logics have been used for

this purpose
l While OWL is sufficiently rich to be used in practice,

extensions are in the making
– They will provide further logical features, including rules

