
Chapter 4
OWL 

Based on slides from Grigoris Antoniou and Frank van Harmelen



TL;DR: What is OWL

OWL uses the syntax of RDF but defines 
new classes and properties, making it more 
expressive as  knowledge representation 
language
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A Brief History of OWL 

l Builds on RDF to “represent rich and complex 
knowledge about things, groups of things, and relations 
between things”

l Draws on decades of experience with systems for 
representing and reasoning with knowledge

l Based on a 2001 DAML+OIL specification
l OWL became a W3C recommendation in 2004, 

extended as OWL2 in 2009
l Well defined RDF/XML serializations
l Formal semantics based on first order logic
l Good tools, both opensource and commercial
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Ontology and Data

lPhilosophy: Ontologies are models of what 
exists in the world (kinds of things, relations, 
events, properties, etc.)
– Information systems: a schema for info. or data
– KR languages: model of classes & relations/properties 

& associated axioms, e.g., subPropertyOf is transitive

lData is information about individual instances 
expressed with terms in the ontology
– Some instances might be considered part of the 

ontology (e.g., God, George Washington, Baltimore)

https://en.wikipedia.org/wiki/Ontology


Requirements for Ontology Languages

l Ontology languages let users write explicit, 
formal conceptualizations of domain models

l Requirements:
– well-defined syntax 
– efficient reasoning support 
– formal semantics 
– sufficient expressive power 
– convenience of expression



Expressive Power vs. Efficient Reasoning

l Always a tradeoff between expressive power 
and efficient reasoning support

l The richer the language, the more inefficient the 
reasoning support becomes (in general)

l Reasoning can be undecidable or semi-decidable 
and even if decidable can be exponentially hard

l We need a compromise between:
– Language supported by reasonably efficient reasoners 
– Language that can express large classes of ontologies 

and knowledge

https://en.wikipedia.org/wiki/Undecidable_problem


Kinds of Reasoning about Knowledge

l Class membership 
If x is an instance of a class C, and C is a subclass of D, then we 
can infer that x is an instance of D

l Equivalence of classes 
If class A is equivalent to class B, and class B is equivalent to 
class C, then A is equivalent to C, too

l Consistency
– X is an instance of classes A and B, but A and B are disjoint
– This is an indication of an error in the ontology or data

l Classification
Certain property-value pairs are a sufficient condition for 
membership in a class A; if an individual x satisfies such 
conditions, we conclude that x must be an instance of A



Uses for Reasoning 

l Reasoning support is important for
– Deriving new relations and properties
– Automatically classifying instances in classes
– Checking consistency of ontology and knowledge
– checking for unintended relationships between 

classes

l Checks like these are valuable for 
– designing large ontologies, where multiple authors are 

involved
– integrating and sharing ontologies from various 

sources



Reasoning Support for OWL

l Semantics is a prerequisite for reasoning 
support

l Formal semantics and reasoning support usually 
provided by 
– mapping an ontology language to known logical 

formalism
– using automated reasoners that already exist for 

those formalisms

l OWL is (partially) mapped to a description logic
DLs are a subset of logic for which efficient reasoning 
support is possible



RDFS’s Expressive Power Limitations

l Local scope of properties 
– rdfs:range defines range of a property (e.g., 

eats) for all instances of a class 
– In RDF Schema we can’t declare range 

restrictions that apply to only some
– E.g., animals eat living_things but cows only 

eat plants
– :eat rdfs:domain :animal; range :living_thing

:eat rdfs:domain :cow; range :plant



RDFS’s Expressive Power Limitations

l Disjointness of classes
– Sometimes we wish to say that classes are disjoint 

(e.g. male and female)

l Boolean combinations of classes
– We may want to define new classes by combining 

other classes using union, intersection, and 
complement

– E.g., person equals union of male and female classes
– E.g., weekdays equals set {:Monday, … :Sunday}



RDFS’s Expressive Power Limitations

l Cardinality restrictions
– E.g., a person has exactly two parents, a course is 

taught by at least one lecturer

l Special characteristics of properties
– Transitive property (like hasAncestor)
– Unique property (like hasMother)
– A property is the inverse of another property (like 

eats and eatenBy



Combining OWL with RDF Schema

l Ideally, OWL would extend RDF Schema
Consistent with the layered architecture of the 
Semantic Web

l But simply extending RDF Schema works
against obtaining expressive power and 
efficient reasoning 
Combining RDF Schema with logic leads to 
uncontrollable computational properties 

l OWL uses RDF and most of RDFS



Three Species of OWL 1

l W3C’sWeb Ontology Working Group defined 
OWL as three different sublanguages:
– OWL Full
– OWL DL (DL for Description Logic)
– OWL Lite

l Each sublanguage geared toward fulfilling 
different aspects of requirements



OWL Full

l It uses all the OWL languages primitives
l It allows the combination of these primitives in 

arbitrary ways with RDF and RDF Schema
l OWL Full is fully upward-compatible with RDF, 

both syntactically and semantically
l OWL Full is so powerful that its reasoning is 

undecidable



Soundness and completeness

lA sound reasoner only makes conclusions that 
logically follow from the input, i.e., all of its 
conclusions are correct
– We typically require our reasoners to be sound

lA complete reasoner can make all conclusions 
that logically follow from the input
– We cannot guarantee complete reasoners for full 

FOL and many subsets
– So, we can’t do it for OWL Full



OWL DL

l OWL DL (Description Logic) is a sublanguage of 
OWL Full that restricts application of the 
constructors from OWL and RDF

– Application of OWL’s constructors to each other is 
disallowed

– It corresponds to a well studied description logic

l OWL DL permits efficient reasoning support
l But we lose full compatibility with RDF

– Not every RDF document is a legal OWL DL document
– Every legal OWL DL document is a legal RDF document



OWL Lite

l An even further restriction limits OWL DL to a 
subset of the language constructors
– E.g., OWL Lite excludes enumerated classes, 

disjointness statements, and arbitrary cardinality

l The advantage of this is a language that is 
easier to
– grasp, for users
– implement, for tool builders

l The disadvantage is restricted expressivity



OWL Compatibility with RDF Schema

l All varieties of OWL use 
RDF for their syntax

l Instances are declared  
as in RDF, using RDF 
descriptions 

l OWL constructors are
specializations of their 
RDF counterparts

l OWL classes and 
properties have 
additional constraints

rdfs:Resource

rdfs:Class

owl:DatatypeProperty

owl:ObjectProperty

rdf:Property

owl:Class
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OWL Syntactic Varieties

l OWL builds on RDF and uses RDF’s 
serializations

l Other syntactic forms for OWL have also 
been defined:

– Alternative, more readable serializations
– These are often used in ontology editing 

tools, like Protege



OWL XML/RDF Syntax: Header in Turtle

@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/ XLMSchema#> .

l OWL documents are RDF documents

l and start with a typical declaration of 
namespaces

l W3C owl recommendation has the namespace 
http://www.w3.org/2002/07/owl#"

http://www.w3.org/2002/07/owl
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema


owl:Ontology
<> a owl:Ontology ;
rdfs:comment "Example OWL ontology" ;
owl:priorVersion <http://example.org/uni-ns-old> ;
owl:imports <http://example.org/persons> ;
rdfs:label "University Ontology" .

l owl:imports, a transitive property, indicates that 
the document commits to all of the terms as 
defined in its target

l owl:priorVersion points to an earlier version of 
this document



OWL Classes

:AssociateProfessor a owl:Class ;
owl:disjointWith (:Professor :AssistantProfessor) .

lClasses are defined using owl:Class
– owl:Class is a subclass of rdfs:Class

lOwl:Class is disjoint with datatypes (aka literals)
lDisjointness is defined using owl:disjointWith

– Two disjoint classes are can share no instances



Another Example

:Man rdfs:subClassOf foaf:Person .
:Woman rdfs:subClassOf foaf:Person .
:Man owl:disjointWith :Woman .

Questions:
l Is :Man an rdfs:Class or a owl:Class?
l Why don’t we need to assert that :Man is some kind of 

class? 
l Do we need to assert the disjointness both ways?
l What happens of we assert :pat a :Man; a :Woman?



Protégé 

https://protege.stanford.edu/


StarDog 

https://www.stardog.com/


OWL Classes
:Faculty a owl:Class;

owl:equivalentClass :AcademicStaffMember .

lowl:equivalentClass asserts two classes are 
equivalent

–Each must have the same members

lowl:Thing is the most general class, which 
contains everything
– i.e., every owl class is rdfs:subClassOf owl:Thing

lowl:Nothing is the empty class 
– i.e., owl:NoThing is rdfs:subClassOf every owl class



OWL Properties

l OWL has two kinds of properties
l Object properties relate objects to other objects

– owl:ObjectProperty, e.g. isTaughtBy, 
supervises

l Data type properties relate objects to datatype
values
– owl:DatatypeProperty, e.g. phone, title, age, …

lThese were made separate to make it easier to 
implement sound and complete reasoners



Datatype Properties

lOWL uses XML Schema data types, exploiting 
the layered architecture of the Semantic Web

:age a owl:DatatypeProperty;
rdfs:domain foaf:Person;
rdfs:range xsd:nonNegativeInteger .



OWL Object Properties

Typically user-defined data types

:isTaughtBy a owl:ObjectProperty;
rdfs:domain :Course;
rdfs:range :AcademicStaffMember;
rdfs:subPropertyOf :involves .



Inverse Properties

:teaches a owl:ObjectProperty;
rdfs:range :Course;
rdfs:domain :AcademicStaffMember;
owl:inverseOf :isTaughtBy .

Or just

:teaches owl:inverseOf :isTaughtBy .
A partial list of axioms:

owl:inverseOf rdfs:domain owl:ObjectProperty;
rdfs:range owl:ObjectProperty; 
a owl:SymmetricProperty. 

{?P  owl:inverseOf ?Q. ?S ?P ?O} => {?O ?Q ?S}. 
{?P owl:inverseOf ?Q. ?P  rdfs:domain ?C} => {?Q rdfs:range ?C}.
{?A owl:inverseOf ?C. ?B owl:inverseOf ?C} => {?A rdfs:subPropertyOf ?B}.



Equivalent Properties

:lecturesIn owl:equivalentProperty :teaches .
l Two properties have the same extension

– Intention vs. extension
– Extension of a property is all of the subject-object 

pairs it holds between

l Axioms
{ ?A rdfs:subPropertyOf ?B. 

?B rdfs:subPropertyOf ?A.} 
<=> {?A owl:equivalentProperty ?B.}. 

https://en.wikipedia.org/wiki/Extension_(semantics)


Property Restrictions

lDeclare that class C satisfies certain conditions
– All instances of C satisfy the conditions

lEquivalent to: C is subclass of a class C', where 
C' collects all objects that satisfy the 
conditions (C' can remain anonymous)

lExample:
– People whose sex is male and have at least one child 

whose sex is female and whose age is six
– Things with exactly two arms and two legs



Property Restrictions

lowl:Restriction element describes such a class
lElement has an owl:onProperty element and one 

or more restriction declarations
lOne type defines cardinality restrictions 

A Parent must have at least one child
:Parent rdfs:subClassOf

[a owl:Restriction;
owl:onProperty :hasChild;
owl:minCardinalityQ "1"] .



Property Restrictions

l This statement defines Parent as any 
Person who has at least one child

:Parent owl:equivalentClass
owl:intersectionOf (:Person 

[a owl:Restriction;
owl:onProperty :hasChild;
owl:minCardinalityQ "1”])

lNote the Turtle syntax
:C1 owl:intersectionOf (:C2 :C3 :C4) .



Property Restrictions

Other restriction types defines constraints on 
the kinds of values the property may take

– owl:allValuesFrom specifies universal 
quantification 

– owl:hasValue specifies a specific value 
– owl:someValuesFrom specifies existential 

quantification



owl:allValuesFrom

lDescribe a class where all of the values of a 
property match some requirement

lE.g., Math courses taught by professors:

[a :mathCourse,
[a owl:Restriction;
owl:onProperty :isTaughtBy;
owl:allValuesFrom :Professor] ].



Offspring of people are people

:Person a owl:Class,
rdfs:subClassOf

[ a owl:Restriction;
owl:onProperty bio:offspring; 
owl:allValuesFrom :Person] .



Offspring of people are people

:Person a owl:Class,
rdfs:subClassOf

[ a owl:Restriction;
owl:onProperty bio:offspring; 
owl:allValuesFrom :Person] .

“The class of things, all of whose offspring are 
people”

:Person things, all of 
whose offspring 
are people



Offspring of people are people

:Person a owl:Class;
rdfs:subClassOf

[ a owl:Restriction;
owl:allValuesFrom :Person;
owl:onProperty bio:offspring ] .

:john a :Person; bio:offspring :mary



What follows? 
:Person rdfs:subClassOf

[owl:allValuesFrom :Person; 
owl:onProperty bio:offspring] .

???
:bio:offspring rdfs:domain :animal;

rdfs:range :animal.
???
:alice a foaf:Person;

bio:offspring :bob.
???
:carol a foaf:Person.
:don bio:offspring :carol.
???

“people 
give birth to  
people”



What follows? 

:Person rdfs:subClassOf
[owl:allValuesFrom :Person; 
owl:onProperty bio:sprungFrom] .

bio:sprungFrom rdfs:domain :animal;
rdfs:range :animal;
owl:inverse bio:offspring.

:carol a foaf:Person.
:don bio:offspring :carol.
???

“people are 
born of 
people”



owl:hasValue

l Describe a class with a particular value for a property
l E.g., Math courses taught by Professor Longhair
# Math courses taught by :longhair
[ rdfs:subclassOf :mathCourse;
[ a owl:restriction;

owl:onProperty :isTaughtBy;
owl:hasValue :longhair] .

Questions:
l Does this say all math courses are taught by :longhair?
l Does it say that there are some courses taught by :longhair?
l Can all classes, however defined, be paraphrased by a noun 

phrase in English?



A typical example

:Male owl:equivalentClass
owl:intersectionOf
(:Person, 

[a owl:Restriction;
owl:onProperty :sex;
owl:hasValue "male"] ).



A typical example

:Man owl:equivalentClass
owl:intersectionOf
(:Person, 

[a owl:Restriction;
owl:onProperty :sex;
owl:hasValue "male"] ).

:Person

:sex == “male”

:Man

Classes  are sets in OWL



What follows?

:ed a :Man .

???

:frank a foaf:Person; :sex "male".

???

:pat a foaf:Person; :sex "male"; :sex "female" .

???



owl:someValuesFrom

l Describe class requiring it to have at least one 
value for a property matching a description

l E.g., Academic staff members who teach an
undergraduate course

[ a :academicStaffMember;
a [owl:onProperty :teaches;

owl:someValuesFrom :undergraduateCourse] ]



Cardinality Restrictions

lWe can specify minimum and maximum number 
using owl:minCardinality & owl:maxCardinality
– Courses with fewer than 10 students
– Courses with between 10 and 100 students
– Courses with more than 100 students

lCan specify a precise number by using the same 
minimum and maximum number
– Courses with exactly seven students

lFor convenience, OWL offers also owl:cardinality
– E.g., exactly N



Cardinality Restrictions

E.g. courses taught be at least two people

[a owl:Restriction;

owl:onProperty :isTaughtBy;

owl:minCardinality
“2”^^xsd;nonNegativeInteger] .



What does this say?

:Parent owl:equivalentClass
[a owl:Restriction;
owl:onProperty :hasChild;
owl:minCardinality “1”^^xsd:integer] .

Questions:
lMust parents be humans?
lMust their children be humans?



Definition of a parent

The parent class is equivalent to the class of 
things that have at least one child

All(x): Parent(x) ó Exisits(y) hasChild(x, y)

If hasChild is defined as having Person as it’s 
domain, then Parents are also people.



Special Properties
lowl:TransitiveProperty (transitive property) 

– E.g. “has better grade than”, “is ancestor of”

lowl:SymmetricProperty (symmetry)
– E.g. “has same grade as”, “is sibling of”

lowl:FunctionalProperty defines a property that has 
at most one value for each object

– E.g. “age”, “height”, “directSupervisor”

lowl:InverseFunctionalProperty defines a property 
for which two different subjects cannot have the 
same value

– e.g., “ssn”, “mobile phone number”



Boolean Combinations

lWe can combine classes using Boolean 
operations (union, intersection, complement)

lNegation is introduced by the complementOf, 
e.g., courses not taught be staffMembers

[ a :course,
owl:Restriction;

owl:onProperty :taughtBy;
owl:allValuesFrom [a owl:Class;

owl:complementOf :staffMember] 
] .



Boolean Combinations

l The new class is not a subclass of the union, but 
rather equal to the union
– We have stated an equivalence of classes

l E.g., university people is the union of 
staffMembers and Students

:peopleAtUni
owl:equivalentClass

owl:unionOf (:staffMember :student) .



Boolean Combinations

E.g., CS faculty is the intersection of faculty and 
things that belongTo the CS Department.

:facultyInCS owl:equivalentClass
owl:intersectionOf

(:faculty 
[ a owl:Restriction;

owl:onProperty :belongsTo; 
owl:hasValue :CSDepartment ] 

) .



Nesting of Boolean Operators

E.g., administrative staff are staff members who are not 
faculty or technical staff members

:adminStaff owl:equivalentClass

owl:intersectionOf

(:staffMember

[a owl:Class;

owl:complementOf [a owl:Class; 

owl:equivalentClass

owl:unionOf (:faculty :techSupportStaff)]])

SM

F TS



Enumerations with owl:oneOf 

lE.g., a thing that is either Monday, Tuesday, …

[a owl:Class;
owl:oneOf (:Monday 

:Tuesday
:Wednesday
:Thursday
:Friday
:Saturday
:Sunday) ]



Declaring Instances

Instances of OWL classes are declared as in RDF

:john 
a :academicStaffMember;
uni:age 39^^xsd:integer .



No Unique-Names Assumption

lOWL does not adopt the unique-names 
assumption of database systems
– That two instances have a different name or ID 

does not imply that they are different individuals

lSuppose we state that each course is taught 
by at most one staff member, and that a 
given course is taught by #949318 and is taught 
by #949352
– An OWL reasoner does not flag an error 
– Instead it infers that the two resources are equal



Distinct Objects

To ensure that different individuals are 
recognized as such, we must explicitly 
assert their inequality:

:john owl:differentFrom :mary .



Distinct Objects

OWL provides a shorthand notation to assert the 
pairwise inequality of all individuals in a given list

[a owl:allDifferent;
owl:distinctMembers (:alice :bob :carol :don) ].



Data Types in OWL

lXML Schema provides a mechanism to 
construct user-defined data types 
– E.g., the data type of adultAge includes all

integers greater than 18

lSuch derived data types can’t be used in OWL 
– The OWL reference document lists all the XML 

Schema data types that can be used
– These include the most frequently used types such 

as string, integer, Boolean, time, and date.



Inferring Distinctness
An ontology may provide many ways to infer that individ-
uals as distinct from what’s known about them, e.g. they
lBelong to sets known to be disjoint (e.g., :Man, :Woman)

:pat1 a :man. :pat2 a :woman.  :Man owl:disjointWith :Woman.
lHave inverse functional properties with different values

:pat1 :ssn “249148660” . :pat2 :ssn “482962271” .
:ssn a owl:InverseFunctionalProperty .

lHave different values for a functional property
:pat1 :ssn “249148660” .  :pat2 :ssn “482962271” .
:ssn a owl:FunctionalProperty .

l Are connected with an irreflexive relation
:pat1 :hasChild :pat2.   :hasChild a owl:IrreflexiveProperty .



Combination of Features in OWL Profiles

lDifferent OWL profiles have different sets of 
restrictions regarding the application of 
features

lIn OWL Full, all the language constructors may 
be used in any combination as long as the 
result is legal RDF

lOWL DL removes or restricts some features to 
ensure that complete reasoning is tractable or 
to make reasoning implementations easier



Restriction of Features in OWL DL

lVocabulary partitioning
Any resource is allowed to be only a class, a data 
type, a data type property, an object property, an 
individual, a data value, or part of the built-in 
vocabulary, and not more than one of these 

lExplicit typing
The partitioning of all resources must be stated 
explicitly (e.g., a class must be declared if used in 
conjunction with rdfs:subClassOf)



Restriction of Features in OWL DL

lProperty Separation
– The set of object properties and data type 

properties are disjoint
– Therefore the following can never be 

specified for data type properties:
lowl:inverseOf
lowl:FunctionalProperty
lowl:InverseFunctionalProperty
lowl:SymmetricProperty 



Restriction of Features in OWL DL

lNo transitive cardinality restrictions
– No cardinality restrictions may be placed on 

transitive properties 
– e.g., people with more than 5 descendants

lRestricted anonymous classes
Anonymous classes are only allowed to occur as:
– the domain and range of either 

owl:equivalentClass or owl:disjointWith
– the range (but not the domain) of 

rdfs:subClassOf



Restriction of Features in OWL Lite

l Restrictions of OWL DL and more
l owl:oneOf, owl:disjointWith, owl:unionOf, 

owl:complementOf, owl:hasValue not allowed 
l Cardinality statements (minimal, maximal, exact 

cardinality) can only be made on values 0 or 1 
l owl:equivalentClass statements can no longer 

be made between anonymous classes but only 
between class identifiers 



African Wildlife Ontology

lAn small example using OWL for an ontology of 
African animals and plants

lUsed in 2nd edition of the Semantic Web Primer
lUsed by Maria Keet for her course and book An 

Introduction to Ontology Engineering
lSee her recent article, The African Wildlife 

Ontology tutorial ontologies: requirements, 
design, and content

lSee 

https://people.cs.uct.ac.za/~mkeet/OEbook/
https://arxiv.org/abs/1905.09519


African Wildlife Ontology



African Wildlife Ontology:  Classes

See awo1.ttl

https://github.com/UMBC-CMSC-491-691-F19-Knowledge-Graphs/class_material/blob/master/examples/owl_examples/africanWildlife/awo1.ttl


African Wildlife Ontology:  Classes

:animal owl:disjointWith :plant .

:herbivore rsds:subClassOf :animal;
owl:disjointWith :carnivore .

:giraffe rdfs:subClassOf :herbivore .

:carnivore rdfs:subClassOf :animal .
:lion rdfs:subClassOf :carnivore .



Branches are parts of trees



African Wildlife: Properties

# e.g, hand part of arm, arm part of body
:isPartOf a owl:TransitiveProperty .

# only animals eat things
:eats :domain :animal.

# the inverse of :eats in :eatenBy
:eats owl:inverseOf :eatenBy.



An African Wildlife: Branches

# plants and animals are disjoint
:plant owl:disjointWith :animal

# trees are plants
:tree rdfs:subClassOf :plant

# branches are only parts of trees
:branch rdfs:subClassOf

[a owl:Restriction; 
owl:allValuesFrom :tree
owl:onProperty :isPartOf]



African Wildlife: Leaves

# leaves are only parts of branches
:leaf rdfs:subClassOf

[a owl:Restriction; 
owl:allValuesFrom :branch
owl:onProperty :isPartOf]



African Wildlife: Carnivores

# carnivores are exactly those animals
# that eat animals 
:Carnivore owl:intersectionOf

(:Animal, 
[a owl:Restriction; 

owl:someValuesFrom :Animal
owl:onProperty :eats]

) .

Can carnivores 
eat plants?



African Wildlife: Herbivores

How can we define Herbivores?



African Wildlife: Herbivores

Here is a start

:herbivore a owl:Class;
rdfs:comment "Herbivores are exactly those 

animals that eat only plants or parts of 
plants” .



African Wildlife: Herbivores

:Herbivore owl:equivalentClass
[a owl:Class;
owl:intersectionOf
(:Animal 
[a owl:Restriction
owl:onProperty :eats;
owl:allValuesFrom
[a owl:Class;
owl:equivalentClass
owl:unionOf
(:Plant
[a owl:Restriction;
owl:onProperty :isPartOf;
owl:allValuesFrom :Plant])]])]



African Wildlife: Giraffes

# giraffes are herbivores, and eat only leaves
Giraffe rdfs:subClassOf

:Herbavore,
[owl:Restriction

owl:onProperty :eats;
owl:allValues:From :Leaf] .



African Wildlife: Lions
# Lions are animals that eat only herbivores

:lion rdfs:subClassOf
:Carnivore,
[a Restriction

owl:onProperty :eats;
owl:allValuesFrom :Herbavore] . 



African Wildlife: Tasty Plants

#tasty plants are eaten both by herbivores & carnivores 

???????????????



African Wildlife: Tasty Plants

#tasty plants are eaten both by herbivores & carnivores 
:TastyPlant

rdfs:subClassOf
:Plant,
[a Restriction

owl:onProperty :eatenBy;
owl:someValuesFrom :Herbavore],

[a Restriction
owl:onProperty :eatenBy;
owl:someValuesFrom :Carnivore .]



Outline

1. A bit of history
2. Basic Ideas of OWL 
3. The OWL Language
4. Examples
5. The OWL Namespace
6. OWL 2



Extensions of OWL

l Modules and Imports
l Defaults
l Closed World Assumption
l Unique Names Assumption
l Procedural Attachments
l Rules for Property Chaining



Modules and Imports

l The importing facility of OWL is very trivial: 
– It only allows importing of an entire 

ontology, not parts of it
l Modules in programming languages based on 

information hiding: state functionality, hide 
implementation details
– Open question how to define appropriate 

module mechanism for Web ontology 
languages



Defaults

l Many practical knowledge representation 
systems allow inherited values to be 
overridden by more specific classes in the 
hierarchy
– treat inherited values as defaults 

l No consensus has been reached on the right 
formalization for the nonmonotonic behaviour 
of default values 



Closed World Assumption

l OWL currently adopts the open-world 
assumption: 
– A statement cannot be assumed true on the basis 

of a failure to prove it
– On the huge and only partially knowable WWW, 

this is a correct assumption

l Closed-world assumption: a statement is true 
when its negation cannot be proved
– tied to the notion of defaults, leads to 

nonmonotonic behaviour



Unique Names Assumption

l Typical database applications assume that 
individuals with different names are indeed 
different individuals 

l OWL follows the usual logical paradigm where 
this is not the case
– Plausible on the WWW

l One may want to indicate portions of the 
ontology for which the assumption does or 
does not hold



Procedural Attachments

l A common concept in knowledge 
representation is to define the meaning of a 
term by attaching a piece of code to be 
executed for computing the meaning of the 
term
– Not through explicit definitions in the language 

l Although widely used, this concept does not 
lend itself very well to integration in a 
system with a formal semantics, and it has 
not been included in OWL 



Rules for Property Chaining

l OWL does not allow the composition of 
properties for reasons of decidability

l In many applications this is a useful 
operation

l One may want to define properties as 
general rules (Horn or otherwise) over other 
properties 

l Integration of rule-based knowledge 
representation and DL-style knowledge 
representation is an area of research 



OWL 2 adds
l Qualified cardinality

– A hand has five digits, one of which is a thumb and four of 
which are fingers

l Stronger datatype/range support
l Additional property characteristics

– E.g., reflexivity

l Role chains
– E.g., hasParent.hasSibling.hasChild

l A better defined model for punning within DL
– Allows a term to name both a concept and an individual

l More powerful annotations



Conclusions

l OWL is the proposed standard for Web ontologies 
l OWL builds upon RDF and RDF Schema: 

– (XML-based) RDF syntax is used
– Instances are defined using RDF descriptions
– Most RDFS modelling primitives are used

l Formal semantics and reasoning support is provided 
through the mapping of OWL on logics
– Predicate logic and description logics have been used for 

this purpose
l While OWL is sufficiently rich to be used in practice, 

extensions are in the making
– They will provide further logical features, including rules 


