First-Order Logic: Review
RDFS/OWL Smantics

• The semantics of RDFS and OWL are based on First Order Logic

• Advantages:
 – Familiar, well defined, well understood, expressive, powerful
 – Good procedures/tools for inference

• Disadvantages
 – No agreement on how to extend for probabilities, fuzzy representations, higher order logics, etc.
 – Hard to process in parallel
First-order logic

- First-order logic (FOL) models the world in terms of
 - Objects, which are things with individual identities
 - Properties of objects that distinguish them from others
 - Relations that hold among sets of objects
 - Functions, which are a subset of relations where there is only one “value” for any given “input”

- Examples:
 - Objects: Students, lectures, companies, cars ...
 - Relations: Brother-of, bigger-than, outside, part-of, has-color, occurs-after, owns, visits, precedes, ...
 - Properties: blue, oval, even, large, ...
 - Functions: father-of, best-friend, second-half, more-than ...
User provides

• Constant symbols representing individuals in the world
 – Mary, 3, green

• Function symbols, map individuals to individuals
 – father_of(Mary) = John
 – color_of(Sky) = Blue

• Predicate symbols, map individuals to truth values
 – greater(5,3)
 – green(Grass)
 – color(Grass, Green)
FOL Provides

• Truth values
 – True, False
• Variable symbols
 – E.g., x, y, foo
• Connectives
 – Same as in propositional logic: not (¬), and (∧), or (∨), implies (→), iff (↔)
• Quantifiers
 – Universal ∀x or (Ax)
 – Existential ∃x or (Ex)
Sentences: built from terms and atoms

• A term (denoting a real-world individual) is a constant symbol, variable symbol, or n-place function of n terms, e.g.:
 – Constants: john, umbc
 – Variables: x, y, z
 – Functions: mother_of(john), phone(mother(x))

• Ground terms have no variables in them
 – Ground: john, father_of(father_of(john))
 – Not Ground: father_of(X)
Sentences: built from terms and atoms

• An atomic sentence (which has value true or false) is an n-place predicate of n terms, e.g.:
 – green(Kermit))
 – between(Philadelphia, Baltimore, DC)
 – loves(X, mother(X))

• A complex sentence is formed from atomic sentences connected by logical connectives:
 \[\neg P, P \lor Q, P \land Q, P \rightarrow Q, P \leftrightarrow Q \]

where P and Q are sentences
Sentences: built from terms and atoms

- **Quantified sentences** adds quantifiers \forall and \exists
 - $\forall x$ loves($x, \text{mother}(x)$)
 - $\exists x$ number($x) \land \text{greater}(x, 100), \text{prime}(x)$

- A **well-formed formula (wff)** is a sentence containing no “free” variables, i.e., all variables are “bound” by either a universal or existential quantifiers

 $(\forall x)P(x,y)$ has x bound as a universally quantified variable, but y is free
A BNF for FOL

\[S := \langle \text{Sentence} \rangle ; \]
\[\langle \text{Sentence} \rangle := \langle \text{AtomicSentence} \rangle | \]
\[\langle \text{Sentence} \rangle \langle \text{Connective} \rangle \langle \text{Sentence} \rangle | \]
\[\langle \text{Quantifier} \rangle \langle \text{Variable} \rangle, \ldots \langle \text{Sentence} \rangle | \]
\["\text{NOT}" \langle \text{Sentence} \rangle | \]
\["(" \langle \text{Sentence} \rangle ")"; \]
\[\langle \text{AtomicSentence} \rangle := \langle \text{Predicate} \rangle "(" \langle \text{Term} \rangle, \ldots ")" | \]
\[\langle \text{Term} \rangle "=" \langle \text{Term} \rangle; \]
\[\langle \text{Term} \rangle := \langle \text{Function} \rangle "(" \langle \text{Term} \rangle, \ldots ")" | \]
\[\langle \text{Constant} \rangle | \]
\[\langle \text{Variable} \rangle; \]
\[\langle \text{Connective} \rangle := "\text{AND}" | "\text{OR}" | "\text{IMPLIED}" | "\text{EQUIVALENT}"; \]
\[\langle \text{Quantifier} \rangle := "\text{EXISTS}" | "\text{FORALL}"; \]
\[\langle \text{Constant} \rangle := "A" | "X1" | "John" | \ldots ; \]
\[\langle \text{Variable} \rangle := "a" | "x" | "s" | \ldots ; \]
\[\langle \text{Predicate} \rangle := "\text{Before}" | "\text{HasColor}" | "\text{Raining}" | \ldots ; \]
\[\langle \text{Function} \rangle := "\text{Mother}" | "\text{LeftLegOf}" | \ldots ; \]
Quantifiers

• **Universal** quantification
 – $(\forall x)P(x)$ means P holds for all values of x in domain associated with variable
 – E.g., $(\forall x) \text{dolphin}(x) \rightarrow \text{mammal}(x)$

• **Existential** quantification
 – $(\exists x)P(x)$ means P holds for some value of x in domain associated with variable
 – E.g., $(\exists x) \text{mammal}(x) \land \text{lays_eggs}(x)$
 – This lets us make a statement about some object without naming it
Quantifiers (1)

• Universal quantifiers often used with implies to form rules:
 \((\forall x)\ \text{student}(x) \rightarrow \text{smart}(x)\) means “All students are smart”

• Universal quantification rarely used to make blanket statements about every individual in the world:
 \((\forall x)\ \text{student}(x) \land \text{smart}(x)\) means “Everyone in the world is a student and is smart”
Quantifiers (2)

• Existential quantifiers usually used with “and” to specify a list of properties about an individual:
 \((\exists x)\) \text{student}(x) \land \text{smart}(x)\) means “There is a student who is smart”

• Common mistake: represent this in FOL as:
 \((\exists x)\) \text{student}(x) \rightarrow \text{smart}(x)\)

• What does this sentence mean?
 – ??
Quantifier Scope

• FOL sentences have structure, like programs
• In particular, the variables in a sentence have a scope
• For example, suppose we want to say
 – “everyone who is alive loves someone”
 – \((\forall x) \text{alive}(x) \rightarrow (\exists y) \text{loves}(x,y)\)
• Here’s how we scope the variables
 \((\forall x) \text{alive}(x) \rightarrow (\exists y) \text{loves}(x,y)\)

Scope of x
Scope of y
Quantifier Scope

• Switching order of universal quantifiers does not change the meaning
 – \((\forall x)(\forall y)P(x,y) \leftrightarrow (\forall y)(\forall x) P(x,y)\)
 – “Dogs hate cats” (i.e., “all dogs hate all cats”)

• You can switch order of existential quantifiers
 – \((\exists x)(\exists y)P(x,y) \leftrightarrow (\exists y)(\exists x) P(x,y)\)
 – “A cat killed a dog”

• Switching order of universal and existential quantifiers does change meaning:
 – Everyone likes someone: \((\forall x)(\exists y) \text{likes}(x,y)\)
 – Someone is liked by everyone: \((\exists y)(\forall x) \text{likes}(x,y)\)
def verify1():
 # Everyone likes someone: (\forall x)(\exists y) likes(x,y)
 for x in people():
 found = False
 for y in people():
 if likes(x,y):
 found = True
 break
 if not found:
 return False
 return True

Every person has at least one individual that they like.
def verify2():
 # Someone is liked by everyone: (\exists y)(\forall x) \text{ likes}(x,y)
 for y in people():
 found = True
 for x in people():
 if not likes(x, y):
 found = False
 break
 if found
 return True
 return False

There is a person who is liked by every person in the universe.
Connections between \forall and \exists

• We can relate sentences involving \forall and \exists using extensions to De Morgan’s laws:
 1. $(\forall x) \neg P(x) \iff \neg (\exists x) P(x)$
 2. $\neg (\forall x) P(x) \iff (\exists x) \neg P(x)$
 3. $(\forall x) P(x) \iff \neg (\exists x) \neg P(x)$
 4. $(\exists x) P(x) \iff \neg (\forall x) \neg P(x)$

• Examples
 1. All dogs don’t like cats \iff No dogs like cats
 2. Not all dogs dance \iff There is a dog that doesn’t dance
 3. All dogs sleep \iff There is no dog that doesn’t sleep
 4. There is a dog that talks \iff Not all dogs can’t talk
Simple genealogy KB in FOL

Design a knowledge base using FOL that

- Has facts of immediate family relations, e.g., spouses, parents, etc.
- Defines of more complex relations (ancestors, relatives)
- Detect conflicts, e.g., you are your own parent
- Infers relations, e.g., grandparent from parent
- Answers queries about relationships between people
How do we approach this?

• Design an initial ontology of types, e.g.
 – e.g., person, man, woman, gender

• Add general individuals to ontology, e.g.
 – gender(male), gender(female)

• Extend ontology be defining relations, e.g.
 – spouse, has_child, has_parent

• Add general constraints to relations, e.g.
 – spouse(X,Y) => ~ X = Y
 – spouse(X,Y) => person(X), person(Y)

• Add FOL sentences for inference, e.g.
 – spouse(X,Y) ⇔ spouse(Y,X)
 – man(X) ⇔ person(X) ∧ has_gender(X, male)
Simple genealogy KB in FOL

- Has facts of immediate family relations, e.g., spouses, parents, etc.
- Has definitions of more complex relations (ancestors, relatives)
- Can detect conflicts, e.g., you are your own parent
- Can infer relations, e.g., grandparent from parent
- Can answer queries about relationships between people
Example: A simple genealogy KB by FOL

• Predicates:
 – `parent(x, y), child(x, y), father(x, y), daughter(x, y),` etc.
 – `spouse(x, y), husband(x, y), wife(x, y)`
 – `ancestor(x, y), descendant(x, y)`
 – `male(x), female(y)`
 – `relative(x, y)`

• Facts:
 – `husband(Joe, Mary), son(Fred, Joe)`
 – `spouse(John, Nancy), male(John), son(Mark, Nancy)`
 – `father(Jack, Nancy), daughter(Linda, Jack)`
 – `daughter(Liz, Linda)`
 – `etc.`
Example Axioms

\((\forall x,y)\) has_parent\((x, y) \leftrightarrow\) has_child \((y, x)\)

\((\forall x,y)\) father\((x, y) \leftrightarrow\) parent\((x, y) \land\) male\((x)\); similar for mother\((x, y)\)

\((\forall x,y)\) daughter\((x, y) \leftrightarrow\) child\((x, y) \land\) female\((x)\); similar for son\((x, y)\)

\((\forall x,y)\) husband\((x, y) \leftrightarrow\) spouse\((x, y) \land\) male\((x)\); similar for wife\((x, y)\)

\((\forall x,y)\) spouse\((x, y) \leftrightarrow\) spouse\((y, x)\); spouse relation is symmetric

\((\forall x,y)\) parent\((x, y) \rightarrow\) ancestor\((x, y)\)

\((\forall x,y)(\exists z)\) parent\((x, z) \land\) ancestor\((z, y) \rightarrow\) ancestor\((x, y)\)

\((\forall x,y)\) descendant\((x, y) \leftrightarrow\) ancestor\((y, x)\)

\((\forall x,y)(\exists z)\) ancestor\((z, x) \land\) ancestor\((z, y) \rightarrow\) relative\((x, y)\)

\((\forall x,y)\) spouse\((x, y) \rightarrow\) relative\((x, y)\); related by marriage

\((\forall x,y)(\exists z)\) relative\((z, x) \land\) relative\((z, y) \rightarrow\) relative\((x, y)\); transitive

\((\forall x,y)\) relative\((x, y) \leftrightarrow\) relative\((y, x)\); symmetric
• Rules for genealogical relations

(∀x,y) parent(x, y) ↔ child (y, x)
(∀x,y) father(x, y) ↔ parent(x, y) ∧ male(x) ;similarly for mother(x, y)
(∀x,y) daughter(x, y) ↔ child(x, y) ∧ female(x) ;similarly for son(x, y)
(∀x,y) husband(x, y) ↔ spouse(x, y) ∧ male(x) ;similarly for wife(x, y)
(∀x,y) spouse(x, y) ↔ spouse(y, x) ;spouse relation is symmetric
(∀x,y) parent(x, y) → ancestor(x, y)
(∀x,y)(∃z) parent(x, z) ∧ ancestor(z, y) → ancestor(x, y)
(∀x,y) descendant(x, y) ↔ ancestor(y, x)
(∀x,y)(∃z) ancestor(z, x) ∧ ancestor(z, y) → relative(x, y)
;related by common ancestry
(∀x,y) spouse(x, y) → relative(x, y) ;related by marriage
(∀x,y)(∃z) relative(z, x) ∧ relative(z, y) → relative(x, y) ;transitive
(∀x,y) relative(x, y) ↔ relative(y, x) ;symmetric

• Queries

– ancestor(Jack, Fred) ; the answer is yes
– relative(Liz, Joe) ; the answer is yes
– relative(Nancy, Matthew) ;no answer, no under closed world assumption
– (∃z) ancestor(z, Fred) ∧ ancestor(z, Liz)
Axioms, definitions and theorems

- **Axioms**: facts and rules that capture the (important) facts and concepts about a domain; axioms can be used to prove theorems
 - Mathematicians dislike unnecessary (dependent) axioms, i.e. ones that can be derived from others
 - Dependent axioms can make reasoning faster, however
 - Choosing a good set of axioms is a design problem

- A **definition** of a predicate is of the form “$p(X) \iff \ldots$” and can be decomposed into two parts
 - **Necessary** description: “$p(x) \rightarrow \ldots$”
 - **Sufficient** description “$p(x) \leftarrow \ldots$”
 - Some concepts have definitions (triangle) and some do not (person)
More on definitions

Example: define father(x, y) by parent(x, y) and male(x)

- parent(x, y) is a necessary (but not sufficient) description of father(x, y):
 - father(x, y) \rightarrow parent(x, y)

- parent(x, y) ^ male(x) ^ age(x, 35) is a sufficient (but not necessary) description of father(x, y):
 - father(x, y) \leftarrow parent(x, y) ^ male(x) ^ age(x, 35)

- parent(x, y) ^ male(x) is a necessary and sufficient description of father(x, y)
 - parent(x, y) ^ male(x) \leftrightarrow father(x, y)
Notational differences

• Different symbols for and, or, not, implies, ...
 \[\forall \exists \Rightarrow \Leftrightarrow \land \lor \neg \Rightarrow \]
 \[\neg \land (q \land r) \]
 \[\neg p + (q * r) \]

• Prolog
 cat(X) :- furry(X), meows(X), has(X, claws)

• Lispy notations
 (forall ?x (implies (and (furry ?x)
 (meows ?x)
 (has ?x claws))
 (cat ?x)))
A example of FOL in use

• Semantics of W3C’s semantic web stack (RDF, RDFS, OWL) is defined in FOL
• OWL Full is equivalent to FOL
• Other OWL profiles support a subset of FOL and are more efficient
• However, the semantics of schema.org is only defined in natural language text
• ...and Google’s knowledge Graph probably (!) uses probabilities
FOL Summary

• First order logic (FOL) introduces predicates, functions and quantifiers

• More expressive, but reasoning more complex
 – Reasoning in propositional logic is NP hard, FOL is semi-decidable

• Common AI knowledge representation language
 – Other KR languages (e.g., OWL) are often defined by mapping them to FOL

• FOL variables range over objects
 – HOL variables range over functions, predicates or sentences