
Chapter 2
RDF Syntax 2

Topics
• Basic concepts of RDF

• Resources, properties, values, statements, triples
• URIs and URIrefs
• RDF graphs
• Literals, qnames

• Vocabularies and modeling
• Vocabularies
• Blank nodes, data modeling, types, reification
• Lists, bags, collections

• Serialization of RDF graphs
• XML, Turtle, Ntriples

• Critique of RDF

Types

RDF type

lRDF has a type predicate that links a resource to
another that denotes its type
– ex:john rdf:type foaf:Person .
– <http://example.org/john >

<http://www.w3.org/1999/02/22-rdf-syntax-
ns#type>
<http://xmlns.com/foaf/0.1/Person> .

lRDFS adds sub-type concept & constraints
between predicates & types of their arguments

lOWL adds still more concepts operating on types

http://example.org/john

Data Modeling

Structured Values in RDF

lGiven the triple like:
ex:857 exstaff:address "15 Grant Ave, Bedford, MA
01730".

lHow can we best represent separate informa-
tion for the street, city, state and zip code?

lTwo possibilities:
– Use four predicates (e.g., exstaff:street_address, …) to

associate values with exstaff:857
– Create an address resource to attach four predicates to

and link it to exstaff:address with the ex:address
predicate

Structured Values in RDF

Structured Values in RDF

Pr as triples:

exstaff:85740 exterms:address exaddressid:85740 .
exaddressid:85740 exterms:street "1501 Grant Ave" .
exaddressid:85740 exterms:city "Bedford" .
exaddressid:85740 exterms:state "MD" .
exaddressid:85740 exterms:postalCode "01730" .

Structured Values in RDF

lThis approach involves adding many “inter-
mediate” URIrefs (e.g., exaddressid:85740) for
aggregate concepts like John's address

lSuch concepts may never need to be referred
to directly from outside a particular graph, and
hence may not require “universal” identifiers

lRDF allows us to use blank nodes and blank
node identifiers to deal with this issue
– Node IDs in the _ namespace are bnodes, e.g. _:

Knowledge Technologies
Manolis Koubarakis

Blank Node, aka bnode

Blank Nodes Using Triples

exstaff:85740 exterms:address ?? .
?? exterms:postalCode "01730" .
Exstaff:72120 exterms:address ??? .
??? exterms:postalCode "01702" .

lWe want to ensure that the bnodes for 85740’s
and 72120’s addresses are distinct

lThe graphical notation does this by using two
different objects for the bnodes

lRDF allows us to assign an special ID to a bnode
while still maintaining its blank node nature

Blank Node Identifiers
exstaff:85740 exterms:address _:johnaddress .
_:johnaddress exterms:street "1501 Grant Avenue" .
_:johnaddress exterms:postalCode "01730" .

lDistinct bnode must have different bnode ids
lBnode ids have significance only in a single

graph
– dbpedia:Alan_Turing refers to the same thing in every graph,

but a bnode _:1 in two different graphs may not
– Merging two graphs requires us to rename their bnode ids to

avoid accidental conflation (e.g., _:1 => _:100)

lBnode ids may only appear as subjects or
objects and not as predicates in triples

Semantics of Blank Nodes
l In terms of first-order logic, blank nodes

correspond to existentially quantified variables
l Another example: “John’s mother is 50”
l FOL: ∃x mother(john, x) ∧ age(x, 50)
l RDF: :john :mother _:32 . _:32 :age “50” .
l FOL: ∃x mother(x, John) ∧ age(x, 32)

:john “50”
:mother :age

https://en.wikipedia.org/wiki/Existential_quantification

Blank nodes are good for

lRepresenting n-ary relationships in RDF
e.g., the relationship between John Smith and
the street, city, state, and postal code
components of his address

lTo make statements about resources that
don’t have URIs but are described by
relationships with other resources that do
e.g., John’s mother

Example

lTo make statements about Jane Smith we
could use her email address URI
(mailto:jane@example.org) to denote her

lWell, if we do so, how are we going to record
information both about Jane's mailbox (e.g.,
the server it is on) as well as about Jane herself
(e.g., her current physical address)? Similarly, if
we use her Web page URI etc.

mailto:jane@example.org

Bnode Example

When Jane herself does not have a URI, a blank
node provides a better way of modeling this
situation

_:jane exterms:mailbox <mailto:jane@example.org> .
_:jane rdf:type exterms:Person .

_:jane exterms:name "Jane Smith" .
_:jane exterms:empID "23748" .
_:jane exterms:age "26" .

Another use case: Measurements

lWhat does this mean?
dbr:Nile dbp:length "6853"^^xsd:integer

lClick on dbp:length to see its definition

http://dbpedia.org/page/Nile
http://dbpedia.org/property/length
http://dbpedia.org/property/length

Another use case: Measurements

lWhat does this mean?
dbr:Nile dbp:length "6853"^^xsd:integer

lWe can click on dbp:length to see its definition
dbp:length rdf:type rdf:Property .
dbp:length rdfs:label "Length"@en .

l Unfortunately, the definition doesn’t specify
the unit of measurement L

http://dbpedia.org/page/Nile
http://dbpedia.org/property/length
http://dbpedia.org/property/length
http://dbpedia.org/property/length
http://dbpedia.org/property/length

Another use case: Measurements

lWhat does this mean?
dbr:Nile dbp:length "6853"^^xsd:integer

lMeasurements typically have a numeric value
and a unit
– Weight: 2.4 pounds vs. 2.4 kilograms
– Length: 5 miles vs. 5 kilometers
– Price: 29.00 in US Dollars vs. 21.16 Euro
– Time: 30 years vs. 3 milliseconds

lWe can use a bnode to represent a
measurement as a pair with a value and unit

http://dbpedia.org/page/Nile
http://dbpedia.org/property/length

Measurements

lWhat does this mean?
dbr:Nile dbp:length _:1 .
_:1 rdf:type ex:Measure .
_:1 rdf:value ”6853"^^xsd:integer .
_:1 un:units dbr:Kilometre .

lThe RDF namespace has a value property but
assigns no specific meaning to it

Nile

dbr:Kilometre 6853

un:unit

rdf:type

ex:Measure
dbp:length

rdf:value

http://dbpedia.org/page/Nile
http://dbpedia.org/property/length
http://dbpedia.org/page/Kilometre

Serialization

RDF Serialization
• Abstract model for RDF is a graph
• Serialize as text for exchange, storage, viewing

and editing in text editors
• The big three
• XML/RDF – the original
• Ntriples – simple, but verbose; good for processing
• Turtle – compact, easy for people to read and write

• Special formats
• Trig – a format for named graphs
• RDFa – embed RDF in HTML attributes
• JSON-LD – RDF statements as a JSON object

XML encoding for RDF

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:bib="http://daml.umbc.edu/ontologies/bib/">

<rdf:Description about="http://umbc.edu/~finin/talks/idm02/">
<dc:title>Intelligent Information Systems on the Web </dc:Title>
<dc:creator>
<rdf:Description >
<bib:name>Tim Finin</bib:Name>
<bib:email>finin@umbc.edu</bib:Email>
<bib:aff resource="http://umbc.edu/" />

</rdf:Description>
</dc:creator>

</rdfdescription>
</rdf:RDF>

RDF/XML is a W3C
Standard widely used for
storage and exchange

Being supplanted by other
forms

Complex and confusing so we
won’t spend time on it

http://en.wikipedia.org/wiki/RDF/XML

Ntriples

lGood for ingesting into a program or store
lSequence of triples each terminated with a “.”
lURIs encased in angle brackets; no QNames;

literals in double quotes
lTrivial to parse/generate; common download

format for RDF datasets (e.g., DBpedia)
lUses lots of characters due to repeated URLs, but

compresses well
<http://example.org/Turing><http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
<http://example.org/Turing> <http://xmlns.com/foaf/0.1/name> "Alan Turing" .
<http://www.w3.org/2001/sw/RDFCore/ntriples/> <http://xmlns.com/foaf/0.1/mbox> <mailto:alan@turing.org> .

W3C Specification

http://wiki.dbpedia.org/Downloads2015-10
http://www.w3.org/2001/sw/RDFCore/ntriples/

Turtle

lNtriples ⊂ Turtle ⊂ N3
lCompact, easy to read and write and parse
lQnames, [] notation for blank nodes, ; and ,
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://www.w3.org/TR/rdf-syntax-grammar>
dc:title "RDF/XML Syntax Specification (Revised)" ;
dc:creator [foaf:name "Dave Beckett";

foaf:mbox <mailto:dave@beckett.org> ,
<mailto:dbeck@gmail.com>

] .

http://en.wikipedia.org/wiki/N-Triples
http://en.wikipedia.org/wiki/Turtle_(syntax)
http://en.wikipedia.org/wiki/Notation3
mailto:dave@beckett.org
mailto:dbeck@gmail.com

Some details

l@PREFIX lines define namespace abbreviations
lBasic pattern is

Subj pred1 value1;
pred2 value2;
pred3 value3, value4 .

lSpecial notation for the rdf:type predicate
:john a foaf:Person; foaf:name "John Smith" .

lSpecial notation for anonymous bnodes
:john foaf:knows [a foaf:Person; foaf:nick "Bob"].

Notation3 or N3

lN3 was an early turtle-like notation developed
by Sir Tim_Berners Lee himself

l Included support for inference rules
– See CWM for software

lNever became a recommended W3C standard
– Some of its features were problematic for OWL
– Supplanted by Turtle

https://en.wikipedia.org/wiki/Cwm_(software)

Try…

lSome simple RDF serialization examples
lSimple.ttl

A simple Turtle example

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix : <#> .

:john a foaf:Person;
foaf:gender "Male";
foaf:name "John Smith", "Johnny Smith";
foaf:knows :mary,

[a foaf:Person;
foaf:mbox <mailto:mary.smith@gmail.com>] .

:mary a foaf:Person;
foaf:name "Mary Smith" .

https://www.csee.umbc.edu/courses/graduate/691/fall19/07/examples/rdf/

Notation translation

lMost modern Semantic Web software can read
and write rdf in all major serializations
– E.g., Protégé, Jena, Sesame, Amazon Neptune, and

more

lThere are also simple programs that can
convert between them
– rdf2rdf is an example written in Java

http://www.l3s.de/~minack/rdf2rdf/

Reification

Reification

l Sometimes we wish to make statements
about other statements

E.g., to record provenance data, probability, or to assert
:john :believes { :mary :loves :john }

l We must be able to refer to a statement
using an identifier

l RDF allows such reference through a
reification mechanism which turns a
statement into a resource

Reify

lEtymology: Latin res thing
lDate: 1854
lTo regard (something abstract) as a material or

concrete thing

Wikipedia: reification (computer science)

Reification is the act of making an abstract con-
cept or low-level implementation detail of a pro-
gramming language accessible to the program-
mer, often as a first-class object. For example,
– The C programming language reifies the low-level detail

of memory addresses
– The Scheme programming language reifies continua-

tions (approximately, the call stack)
– In C#, reification is used to make parametric polymor-

phism implemented as generics a first-class feature of
the language

– …

https://en.wikipedia.org/wiki/Reification_(computer_science)

Reification Example

:949352 uni:name “Grigoris Antoniou” .

reifies as

[a rdf:Statement;

rdf:subject: :949352

rdf:predicate uni:name;

rdf:object “Grigoris Antoniou”] .

Another reification example

“Alice suspects that Bob loves Carol”
@prefix ep: <http://example.com/epistimology>
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix xsd: http://www.w3.org/2001/XMLSchema
@prefix : <#>.
:bob :loves :carol .
[:alice ep:believes

[a rdf:Statement;
rdf:subject :bob;
rdf:predicate :loves;
rdf:object :carol;
ex:certainty “0.50”^^xsd:integer]

http://example.com/epistimology
http://www.w3.org/2001/XMLSchema@

Containers

Container Elements

l RDF has some vocabulary to describe collections of
things and make statements about them

l E.g., we may wish to talk about the courses given by a
particular lecturer

l The content of container elements are named rdf:_1,
rdf:_2, etc.
– Alternatively rdf:li

l Containers seem a bit messy in RDF, but are needed
l :john :teaches [a rdf:Bag; rdf:li :cmsc201, :cmsc202,

cmsc345 .] .

Three Types of Container Elements

l rdf:Bag an unordered container, allowing
multiple occurrences
e.g., members of the faculty, documents in a folder

l rdf:Seq an ordered container, which may
contain multiple occurrences
e.g., modules of a course, items on an agenda,
alphabetized list of staff members

l rdf:Alt a set of alternatives
e.g., the document home site and its mirrors,
translations of a document in various languages

Example for a Bag
Let’s describe a course with a collection of students

Example for a Bag

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix s: <http://example.org/students/vocab#>.
<http://example.org/courses/6.001>

s:students [
a rdf:Bag;
rdf:_1 <http://example.org/students/Amy>;
rdf:_2 <http://example.org/students/Mohamed>;
rdf:_3 <http://example.org/students/Johann>;
rdf:_4 <http://example.org/students/Maria>;
rdf:_5 <http://example.org/students/Phuong>.

].

Bags and Seqs are never full!
lRDF’s semantics is “open world”, so…

–Not possible ”to close” the container, to say:
“these are all elements, there are no more”

–RDF is a graph, with no way to exclude the
possibility that there is another graph
somewhere describing additional members

l Lists are collections with only the specified
members mentioned.

lDescribed using a linked list pattern via:
–rdf:List, rdf:first, rdf:rest, rdf:nil

Open vs. closed world semantics
lReasoning systems make a distinction between

open and closed world semantics
– OWS: being unable to prove that something is true or

false says nothing about its veracity
– CWS: what cannot be proven to be true is false

lDefault model for Semantic Web is OWS
This was a design decision made early on

http://en.wikipedia.org/wiki/Open_world_assumption
http://en.wikipedia.org/wiki/Closed_World_Assumption

Open vs. closed world semantics
lClassical logic uses Open World Semantics

Being unable to prove P=NP doesn’t convince us that it’s false

lDatabase systems typically assume CWS
The DB includes all trains between NYC and DC

lProlog’s unprovable operator (not or \+) supports CWS
flys(x) :- bird(x), \+ flightless(x).
flightless(x) :- penguin(x); ostrich(x); emu(x).

lSome systems let us specify for which predicates we
have complete knowledge and for which we don’t

– If UMBC’s DB doesn’t list you as registered for CMSC691, you
are not registered

– UMBC’s DB system knows some of your minors but not all

RDF Lists
An ordered list of the three students in a class

RDF Lists

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix s: <http://example.org/students/vocab#>.

<http://example.org/courses/6.001>
s:students
[a rdf:List;
rdf:first <http://example.org/students/Amy>;
rdf:rest [a rdf:list

rdf:first <http://example.org/students/Mohamed>;
rdf:rest [a rdf:List;

rdf:first <http://example.org/students/Johann>;
rdf:rest rdf:nil]]] .

RDF Lists

Turtle has special syntax to represent lists:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix s: <http://example.org/students/vocab#>.

<http://example.org/courses/6.001>
s:students (

<http://example.org/students/Amy>
<http://example.org/students/Mohamed>
<http://example.org/students/Johann>

).

Critique of RDF

RDF Critique: Properties

lProperties are special kinds of resources
– Properties can be used as the object in an object-

attribute-value triple (statement)

– Defined independent of resources

lThis possibility offers flexibility

lBut it is unusual for modelling languages
and OO programming languages

lIt can be confusing for modellers

RDF Critique: Binary Predicates

lRDF uses only binary properties
– This is a restriction because often we use predicates

with more than two arguments
– But binary predicates can simulate these

lExample: referee(X, Y, Z)
– X is the referee in a chess game between players Y

and Z

lExample: between(NYC, Newark, Philadelphia)

RDF Critique: Binary Predicates

lWe introduce:
– a new auxiliary resource chessGame
– the binary predicates ref, player1, and player2

lWe can represent referee(X,Y,Z) as:

RDF Critique: Reification

lThe reification mechanism is quite powerful
l It appears misplaced in a simple language like

RDF
lMaking statements about statements

introduces a level of complexity that is not
necessary for a basic layer of the Semantic Web

l Instead, it would have appeared more natural
to include it in more powerful layers, which
provide richer representational capabilities

RDF Critique: Graph Representation

lThe simple graph or network representation
has more drawbacks

l Linear languages introduce ways to represent
this with parentheses or a way to represent a
block structure

lScoping, for example, is clumsy at best in RDF
believe(john, and (love(bob, carol), love(carol, bob))

lSome of these are addressed through the
notion of a named graph in RDF

RDF graph model is simple

lRDF’s graph model is a simple one
lNeo4J is a popular graph database where both

nodes and links can have properties

https://en.wikipedia.org/wiki/Neo4j

RDF Critique: Summary

lRDF has its idiosyncrasies and is not an
optimal modeling language but

l It is already a de facto standard
l It has sufficient expressive power

– Reasonable foundation on which to build
lUsing RDF offers the benefit that information

maps unambiguously to a model

Conclusion

Topics
• Basic concepts of RDF

• Resources, properties, values, statements, triples
• URIs and URIrefs
• RDF graphs
• Literals, qnames

• Vocabularies and modeling
• Vocabularies
• Blank nodes, data modeling, types, reification
• Lists, bags, collections

• Serialization of RDF graphs
• XML, Turtle, Ntriples

• Critique of RDF

