
The Fat-Free Alternative to XML

JSON as an XML Alternative
l JSON is a light-weight alternative to XML for

data-interchange

l JSON = JavaScript Object Notation
– It’s really language independent

– Most programming languages can easily read it and
instantiate objects or some other data structure

lDefined in RFC 4627, IETF, July 2006
– Current version is RFC 8259, December 2017

lhttp://json.org/ has more information

http://tools.ietf.org/html/rfc4627
https://tools.ietf.org/html/rfc8259
http://json.org/

JSON TL;DR

l Lightweight data-interchange
format

lEasy for humans to read and write
lEasy for machines to parse and

generate
lNot tied tied to JavaScript or Web

Example

{"firstName": "John",
"lastName" : "Smith",
"age" : 25,
"address" :

{"streetAdr” : "21 2nd Street",
"city" : "New York",
"state" : "NY",
”zip" : "10021"},

"phoneNumber":
[{"type" : "home",
"number": "212-555-1234"},
{"type" : "fax",
"number” : "646-555-4567"}]

}

l This is a JSON object with
five key-value pairs

l Objects are wrapped by
curly braces

l There are no object IDs
l Keys are strings
l Values are numbers,

strings, objects or arrays
l Arrays/lists are wrapped

by square brackets

http://www.csee.umbc.edu/courses/graduate/691/fall16/01/examples/json/example.json

Simple BNF

Evaluation: JSON is …

lSimpler and more compact than XML
– No closing tags

– XML parsing is hard because of its complexity

– Compressed the two are similar in size

lA better fit for OO systems than XML

l Less extensible than XML

lWidely preferred for simple data exchange

JSON is Simple

l Less syntax, no semantics
lSchemas? We don’t need no

stinkin schemas!*
lTransforms? Write your own

JSON Schema
{ "id": "http://ex.com/geo-location.schema.json",

"$schema": "http://json-schema.org/draft-
07/schema#",

"title": "Longitude and Latitude Values",
"description": "A geographical coordinate.",
"required": [

"latitude",
"longitude”],

"type": "object",
"properties": {

"latitude": {
"type": "number",
"minimum": -90,
"maximum": 90 },

"longitude": {
"type": "number",
"minimum": -180,
"maximum": 180 }

}
}

{
"latitude": 48.858093,
"longitude": 2.294694

}

• https://json-schema.org/
• IETF draft, 3/2018
• Provide annotations
•Specifies

• Possible properties
• Required properties
• Value types
• Value constraints
• References

https://json-schema.org/
https://tools.ietf.org/id/draft-handrews-json-schema-validation-01.html

JSON-LD

JSON-LD is a W3C recommendation for representing
RDF data as JSON objects
{"@context": {

"name": "http://xmlns.com/foaf/0.1/name",
"homepage": {

"@id": "http://xmlns.com/foaf/0.1/workplaceHomepage",
"@type": "@id"

},
"Person": "http://xmlns.com/foaf/0.1/Person"

},
"@id": "http://me.markus-lanthaler.com",
"@type": "Person",
"name": "Markus Lanthaler",
"homepage": "http://www.tugraz.at/"

}

Many popular systems use JSON

lMongoDB is an open-source database for JSON
objects
– Very popular NoSQL database
– A NoSQL DB is one that uses a model not based on

relational tables

lElastic Search is a popular, scalable information
retrieval engine that uses JSON as its native
representation

http://www.mongodb.org/
http://en.wikipedia.org/wiki/NoSQL
https://www.elastic.co/

Example: JSON in Python
>>> import json
>>> x = json.load(open('example.json'))
>>> x
{u'lastName': u'Smith', u'age': 25, u'phoneNumber': [{u'type': u'home',
u'number': u'212-555-1234'}, {u'type': u'fax', u'number': u'646-555-4567'}],
u'firstName': u'John', u'address': {u'streetAdr': u'21 2nd Street', u'state':
u'NY', u'zip': u'10021', u'city': u'New York'}}
>>> x['address']['state']
u'NY'
>>> print json.dumps(x, sort_keys=True, separators=(',',':'), indent=2)
{"address":{

"city":"New York",
"state":"NY",
"streetAdr":"21 2nd Street",
"zip":"10021”},

"age":25,
"firstName":"John",
"lastName":"Smith",
"phoneNumber":[

{ "number":"212-555-1234",
"type":"home”},

{"number":"646-555-4567",
"type":"fax” }] }

>>>

• Python’s JSON
package reads & writes
JSON from/to files &
strings

• Maps JSON objects to
Python dictionaries

• Maps JSON arrays to
Python lists

• Dump (write to file) and
dumps (write to string)
functions can do
simple pretty printing

JSON vs. XML

l JSON: The Fat-Free Alternative to XML
json.org page laying out the case for JSON over XML

lStop Comparing JSON and XML
Blog post arguing that they're very different things
with their own areas of applicability

lXML óJSON
There are many web tools (e.g.: this one) and
software packages (e.g. xml2dict) that can convert
between simple XML and JSON representations

http://www.json.org/xml.html
http://www.yegor256.com/2015/11/16/json-vs-xml.html
http://www.utilities-online.info/xmltojson/
https://pypi.org/project/XML2Dict/

Jupyter Notebook Examples

lVisit http://bit.ly/kg19class and get clone string
lClone this on your computer
l cd class_material/examples/xml/
l If needed:

– pip3 install xmltodict
– pip3 install jupyter

l jupyter notebook &
l In your web browser open xml2json.ipynb

http://bit.ly/kg19class

Worse is Better?

l JSON vs. XML as an example of “Worse is Better”
l In 1989 Dick Gabriel headed a company with the

best commercial version of Lisp
– Lisp was considered by programming language

experts to be much better than C
– But C was 10x more popular than Lisp
– Cf. today: Scheme vs. Python (w.r.t. mutable lists)

lGabriel explained it as worse is better
Software that's limited, but simple to learn/use,
and flexible, can be more popular for most users

Worse is Better?
l JSON vs. XML as an example of “Worse is Better”

l In 1989 Dick Gabriel headed a company with the
best commercial version of Lisp
– Lisp was considered by programming language

experts to be much better than C

– But C was 10x more popular than Lisp

– Cf. today: Scheme vs. Python (w.r.t. mutable lists)

lGabriel explained it as worse is better
Software that's limited, but simple to learn/use,
and flexible, can be more popular for most users

https://en.wikipedia.org/wiki/Worse_is_better
https://en.wikipedia.org/wiki/Richard_P._Gabriel
https://en.wikipedia.org/wiki/Immutable_object

Google’s JSON Style Guide

l Google has style guides for JSON and other languages
l Note: its an XML document with an XSL stylesheet!

XML source

XSL stylesheet

HTML

https://google.github.io/styleguide/
https://google.github.io/styleguide/jsoncstyleguide.xml
view-source:https://google.github.io/styleguide/jsoncstyleguide.xml
view-source:https://google.github.io/styleguide/styleguide.xsl

Motivation for the style guide?

l Google’s style guide addresses JSON’s shortcomings
by specifying conventions, e.g.:
– JSON doesn’t support objects having a unique ID which is

needed to support graph structures
– The style guide has data.id as a reserved property for this
{"data": {"id": "12345"}}

l Later, we’ll study the W3C’s JSON-LD as a way to
encode semantic web data using JSON
– JSON-LD specifies conventions needed to represent RDF

knowledge graphs in JSON
– Today’s search engines recognize embedded JSON-LD in web

pages and use the content

https://en.wikipedia.org/wiki/JSON-LD

JSON Summary

l JSON is preferred by most people for simple data
encoding and exchange

l Most XML documents can be converted to JSON
l Shortcomings:

– No standard schema mechanism
– No stylesheets
– Available datatypes are very simple
– No semantics, e.g., no type system, cannot say spouse is a

symmetric relation, grandparent = parent of parent

l Good example of worse is better

