
Description
Logics

What Are Description Logics?
l A family of logic based KR formalisms

– Descendants of semantic networks and KL-ONE
– Describe domain in terms of concepts (classes), roles

(relationships) and individuals

l Distinguished by:
– Formal semantics (typically model theoretic) based on a

decidable fragments of FOL
– Provision of inference services

l Sound and complete decision procedures for key problems
l Implemented systems (highly optimized)

l Formal basis for OWL (DL profile)

https://en.wikipedia.org/wiki/Semantic_network
https://en.wikipedia.org/wiki/KL-ONE
https://en.wikipedia.org/wiki/Model_theory
https://en.wikipedia.org/wiki/Decidability_(logic)

DL Paradigm

l Description Logic characterized by a set of
constructors that allow one to build complex
descriptions or terms out of concepts and roles
from atomic ones
– Concepts: classes interpreted as sets of objects,
– Roles: relations interpreted as binary relations on

objects
l Set of axioms for asserting facts about

concepts, roles and individuals

https://en.wikipedia.org/wiki/Description_logic

Typical Architecture

Knowledge Base

TBox

ABox

Inference
System

Interface

Definitions of
Terminology

Assertions
about

individuals

father= man ∏ E has.child X
human=mammal ∏ biped
…

john = human ∏ father
john has.child mary

Division into TBox and ABox has no logical significance, but
is made for conceptual and implementation convenience

DL defines a family of languages

l The expressiveness of a description logic is
determined by the operators that it uses

– Adding or removing operators (e.g., ¬, È) increases
or decreases the kinds of statements expressible

– Higher expressiveness usually means higher
reasoning complexity

l AL or Attributive Language is the base and
includes just a few operators

l Other DLs are described by the additional
operators they include

AL: Attributive Language

Constructor Syntax Example
atomic concept C Human
atomic negation ~ C ~ Human
atomic role R hasChild
conjunction C � D Human �Male
value restriction R.C Human ∃ hasChild.Blond
existential rest. (lim) ∃ R Human ∃ hasChild
Top (univ. conc.) T T
bottom (null conc) ^ ^

for concepts C and D and role R

ALC

constructor Syntax Example
atomic concept C Human
negation ~ C ~ (Human V Ape)
atomic role R hasChild
conjunction C ^ D Human ^ Male
disjunction C V D Nice V Rich
value restrict. ∃ R.C Human ∃ hasChild.Blond
existential restrict. ∃ R.C Human ∃ hasChild.Male
Top (univ. conc.) T T
bottom (null conc) ^ ^

ALC is the smallest DL that is propositionally closed (i.e., includes
full negation and disjunction) and include booleans (and, or, not)
and restrictions on role values

Examples of ALC concepts

l Person � ∀hasChild.Male (everybody whose children are
all male)

l Person � ∀hasChild.Male�∃hasChild.T (everybody who
has a child and whose children are all male)

l Living_being� ¬Human_being (all living beings that are
not human beings)

l Student � ¬∃interestedIn.Mathematics (all students not
interested in mathematics)

l Student � ∀drinks.tea (all students who only drink tea)
l ∃hasChild.Male V ∀hasChild.⊥ (everybody who has a son

or no child)

Other Constructors

The general DL model has additional constructors…

Constructor Syntax Example
Number restriction >= n R >= 7 hasChild

<= n R <= 1 hasmother

Inverse role R- haschild-

Transitive role R* hasChild*

Role composition R � R hasParent � hasBrother

Qualified # restric. >= n R.C >= 2 hasChild.Female

Singleton concepts {<name>} {Italy}

Special names and combinations

See http://en.wikipedia.org/wiki/Description_logic
l S = ALC + transitive properties
l H = role hierarchy, e.g., rdfs:subPropertyOf
l O = nominals, e.g., values constrained by enumerated classes, as

in owl:oneOf and owl:hasValue
l I = inverse properties
l N = cardinality restrictions (owl:cardinality, maxCardonality)
l (D) = use of datatypes properties
l R = complex role axioms (e.g. (ir)reflexivity, disjointedness)
l Q = Qualified cardinality (e.g., at least two female children)
è OWL-DL is SHOIN(D)

è OWL 2 is SROIQ(D) Note: R->H and Q->N

http://en.wikipedia.org/wiki/Description_logic

http://www.cs.man.ac.uk/~ezolin/dl/

http://www.cs.man.ac.uk/~ezolin/dl/

OWL as a DL

lOWL-DL is SHOIN(D)

lWe can think of OWL as having three kinds of
statements

lWays to specify classes
– the intersection of humans and males

lWays to state axioms about those classes
– Humans are a subclass of apes

lWays to talk about individuals
– John is a human, a male, and has a child Mary

Subsumption: D Í C ?

l Concept C subsumes D iff on every interpretation I
I(D) Í I(C)

l This means the same as "(x)(D(x) à C(x)) for complex
statements D & C

l Determining whether one concept logically contains
another is called the subsumption problem.

l Subsumption is undecidable for reasonably
expressive languages
– e.g.; for FOL: does one FOL sentence imply another

l and non-polynomial for fairly restricted ones

https://en.wikipedia.org/wiki/Interpretation_(logic)

These problems can be reduced to subsumption
(for languages with negation) and to the
satisfiability problem
• Concept satisfiability is C (necessarily) empty?

• Instance Checking Father(john)?
• Equivalence CreatureWithHeart ≡ CreatureWithKidney
• Disjointness C ∏ D

• Retrieval Father(X)? X = {john, robert}
• Realization X(john)? X = {Father}

Other reasoning problems

https://en.wikipedia.org/wiki/Satisfiability

Definitions
lA definition is a description of a concept or a

relationship
l It is used to assign a meaning to a term
l In description logics, definitions use a specialized

logical language
lDescription logics are able to do limited

reasoning about concepts defined in their logic
lOne important inference is classification

(computation of subsumption)

Necessary vs. Sufficient
lNecessary properties of an object are common

to all objects of that type
– Being a man is a necessary condition for being a

father
l Sufficient properties allow one to identify an

object as belonging to a type and need not be
common to all members of the type

– Speeding is a sufficient reason for being stopped by
the police

lDefinitions typically specify both necessary and
sufficient properties

Subsumption
lMeaning of Subsumption

A more general concept or description subsumes a more
specific one. Members of a subsumed concept are
necessarily members of a subsuming concept

lExample: Animal subsumes Person; (aka IS-A,

rdfs:subClassOf)

lTwo ways to formalize meaning of subsumption

– Using logic: satisfying a subsumed concept implies

that the subsuming concept is satisfied also

E.g., if john is a person, he is also an animal

– Using set theory: instances of subsumed concept are

necessarily a subset of subsuming concept’s instances

E.g., the set of all persons is a subset of all animals

How Does Classification Work?

animal

mammal

dog

sick animal

rabies

diseasehas

“A dog is
a mammal”

“A sick animal
has a disease”

“rabies is a
disease”

A sick animal is defined as something that is both an animal and has at least one
thing that is a kind of a disease

Defining a “rabid dog”

animal

mammal

dog

sick animal

rabies

diseasehas

rabid dog

has

A rabid dog is defined as something that is both a dog and has at least one thing
that is a kind of a rabies

Classification as a “sick animal”

animal

mammal

dog

sick animal

rabies

diseasehas

has

rabid dog

We can easily prove that s rabid dog is a kind of sick animal

Defining “rabid animal”

animal

mammal

dog

sick animal

rabies

diseasehas

has

rabid dog rabid animal

has

A rabid animal is defined as something that is both an animal and has at least
one thing that is a kind of a rabies

DL reasoners places concepts in hierarchy

animal

mammal

dog

sick animal

rabies

diseasehas

has

rabid dog

rabid animal has

Note: we can remove the subclass
link from rabid animal to animal
because it is redundant. We don’t
need to. But humans like to see the
simplest structure and it may be
informative for agents as well.

We can easily prove that s rabid dog is a kind of rabid animal

Primitive versus Structured (Defined)
lDescription logics reason with definitions

– They prefer to have complete descriptions
– A complete definition includes both necessary conditions and

sufficient conditions

lOften impractical or impossible, especially with
natural kinds

lA “primitive” definition is an incomplete one
– Limits amount of classification that can be done automatically

l Example:
– Primitive: a Person
– Defined: Parent = Person with at least one child

http://en.wikipedia.org/wiki/Natural_kind

Classification is very useful

l Classification is a powerful kind of reasoning
that is very useful

l Many expert systems can be usefully thought
of as doing “heuristic classification”

l Logical classification over structured
descriptions and individuals is also quite useful

l But… can classification ever deduce something
about an individual other than what classes it
belongs to?

l And what does *that* tell us?

Example: Blood Pressure

Non-Critical
Systolic BP

Systolic
Blood Pressure

•pressure

>= 85

•pressure

<= 160

A Non-Critical Blood
Pressure is “a Systolic
B.P. between 85 and
160.”

Non-Critical
Systolic BP

Normal
Systolic BP

Systolic
Blood Pressure

•pressure

>= 90

•pressure

>= 85

•pressure

<= 140
•pressure

<= 160

Example: Blood Pressure

Normal Systolic B.P. is “a Systolic B.P. between 90 and 140.

Non-Critical
Systolic BP

Normal
Systolic BP

Systolic
Blood Pressure

Joe’s BP

?
•pressure

>= 90

•pressure

>= 85

•pressure

<= 140
•pressure

<= 160

If Joe’s BP is Normal is it also Non-Critical?

Non-Critical
Systolic BP

Normal
Systolic BP

Systolic
Blood Pressure

•pressure

>= 90

•pressure

>= 85

•pressure

<= 140
•pressure

<= 160

Concept Classification Infers Normal BP
is Subsumed by Non-Critical BP

Non-Critical
Systolic BP

Normal
Systolic BP

Systolic
Blood Pressure

Joe’s BP

!

•pressure

>= 90

•pressure

>= 85

•pressure

<= 140
•pressure

<= 160

With Classified Concepts the Answer is
Easy to Compute

