Chapter 2
RDF Syntax 1

[Image: RDF logo]
RDF Overview

- RDF data model
- RDF syntax
- RDF serializations: XML, Turtle, N3, ntriples
- RDF Schema (RDFS)
- Semantics of RDF and RDFS
 - Axiomatic Semantics
 - Operational semantics based on rules
- Querying RDF via SPARQL
Introduction

● Problem: What does an XML document mean?
 – XML is about data structures
 – The meaning (semantics) not apparent to machines
● RDF is more a data model than a language
 – It is realized in many different formats
● RDF defines very basic semantics
 – RDFS and OWL define more RDF vocabulary for building rich data models
● RDF remains domain independent
Example 1

What does this mean?
- Are professors also academic staff members?
- If someone teaches a course, are they an academic staff member?

Can’t say in XML, but can specify this in RDFS
Example 2

- Embedding of elements is just a syntactic constraint
- No meaning is defined
- Meaning is in documentation or viewer’s minds
- Does the machine have a mind?
RDF History

- An early version was developed in 1995 by R. V. Guha at Apple
- Draft versions published by W3C in 1997-1998
- W3C recommendation in 1999
- RDF 1.1 (2014) is most recent specification
Key RDF documents: standards

http://w3.org/standards/techs/rdf

RDF CURRENT STATUS

This page summarizes the relationships among specifications, whether they are finished standards or drafts. Below, each title links to the most recent version of a document.

- Show details
- Hide details

Completed Work

W3C Recommendations have been reviewed by W3C Members, by software developers, and by other W3C groups and interested parties, and are endorsed by the Director as Web Standards. Learn more about the [W3C Recommendation Track](http://w3.org/standards/techs/rdf).

Group Notes are not standards and do not have the same level of W3C endorsement.

Standards

<table>
<thead>
<tr>
<th>Date</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-01-16</td>
<td>JSON-LD 1.0 Processing Algorithms and API</td>
</tr>
<tr>
<td></td>
<td>An Application Programming Interface and a set of algorithms for programatically transforming JSON-LD documents in order to make them easier to work with in programming environments like JavaScript, Python, and Ruby.</td>
</tr>
<tr>
<td>2014-01-16</td>
<td>JSON-LD 1.0</td>
</tr>
<tr>
<td></td>
<td>A common JSON representation format for expressing directed graphs; mixing both Linked Data and non-Linked Data in a single JSON document.</td>
</tr>
<tr>
<td>2013-10-29</td>
<td>Internationalization Tag Set (ITS) Version 2.0</td>
</tr>
<tr>
<td></td>
<td>This document defines data categories and their implementation as a set of elements and attributes called the Internationalization Tag Set (ITS). ITS 2.0 is the successor of ITS 1.0. It is designed to foster the creation of multilingual web content.</td>
</tr>
</tbody>
</table>
Topics

- Basic concepts of RDF
 - Resources, properties, values, statements, triples
 - URIs and URIrefs
 - RDF graphs
 - Literals, qnames
- Vocabularies and modeling
 - Vocabularies
 - Blank nodes, data modeling, types, reification
 - Lists, bags, collections
- Serialization of RDF graphs
 - XML, Turtle, Ntriples
- Critique of RDF
What is RDF?

- A data model for representing information (esp. metadata) about resources in the Web
- Can represent information about things that can be identified on the Web, even when not retrievable (e.g., a book)
- Use cases: provide data for applications rather than directly to people
RDF Basics

• Core idea: identify resources using **Web identifiers** and describing resources in terms of simple **properties** and property **values**
• RDF data model is as a “pure” graph model
• To identify resources, RDF uses **Uniform Resource Identifiers (URIs)** and URI references (URIrefs).
• **Definition:** A **resource** is anything that is identifiable by a URIref
Example

Consider the following information:

“there is a Person identified by http://www.w3.org/People/EM/contact#me, whose name is Eric Miller, whose email address is em@w3.org, and whose title is Dr.”
http://www.w3.org/2000/10/swap/pim/contact#Person

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.w3.org/People/EM/contact#me

http://www.w3.org/2000/10/swap/pim/contact#fullName

Eric Miller

mailto:em@w3.org

http://www.w3.org/2000/10/swap/pim/contact#personalTitle

Dr.
Resources being described have properties that have values, and resources are described by making statements specifying those properties and values

• The part that identifies the thing the statement is about is the subject
• The part that identifies the property of the subject the statement specifies is the predicate
• The part that identifies the property’s value is the object
Example

http://www.example.org/index.html has a creator whose value is “John Smith”

- The **subject** is the URL http://www.example.org/index.html
- The **predicate** is the word "creator"
- The **object** is the phrase “John Smith”
RDF Triples

- RDF statements can be written as **triples**
- Simple *ntriples* notation: a set of triples terminated by a periods, where URIs are inside angle brackets

```
```
Graphs: pure and impure
A pure graph model consists only of **edges** between pairs of **nodes**

Can be directed or undirected; can be labeled or not

A graph can be represented as an unordered collection of (subject, predicate, object) triples

If directed, predicate goes from subject to object

Nodes not the subject or object of some triple are not allowed

(John, likes, Mary),
(Mary, likes, Bill),
(John, hates, Bill)
RDF graph model

- RDF is like this with a few caveats
 - Subjects and predicates are identified by URIs
 - Object can be a URI or a literal, i.e., a string or a number
- RDF defines some special URIs and gives them specific meaning, like this one for type
 - http://www.w3.org/1999/02/22-rdf-syntax-ns#type
- RDF has simple conventions for representing both ordered and unordered sequences and a few other data structures
Graph databases have become popular in past 10 years.

A common extension of the pure graph model is to allow both nodes and edges to have properties.

Simple version: properties are key/value pairs, e.g.
- Age : 25
- Date : “1990-09-21”

We might give the likes edge from John to Mary two properties: start with value “1999-09-1” and end with value “2016-01-11”
- Could mean the likes relation held between those two dates
Some property graph technology

- **Neo4J** is perhaps the most widely used property graph.
- **OrientDB** is another popular system that supports for both a property graph and relational databases.
- Apache’s **TinkerPop** is an open source framework for querying and updating graph databases that is supported by most graph databases.
- Amazon’s **Neptune** is a graph database “built for the cloud” supporting both pure RDF and property graphs.
URIs and URIREFs
Uniform Resource Identifiers (URIs)

- URIs identify resources on the Web
- Unlike URLs, they aren’t limited to identifying things with network locations
- No organization controls who makes URIs or how they can be used
 - Some URI schemes (http: URLs) depend on centralized systems such as DNS name servers
 - Others are completely decentralized
URI Reference (URIref)

- **URIref**: URI with optional fragment identifier at end, e.g.:

 http://example.org/index.html#section2

- Fragment usecase:
 - HTML fragments refer to a place in a page
 - RDF fragments refer to resources in a RDF graph that the URI
denotes, e.g., subjects, predicates or objects
 - http://www.w3.org/2004/02/skos/core: vocabulary for describing topics
 - http://www.w3.org/2004/02/skos/core#broader: the *broader* concept in SKOS Core vocabulary

- Like URLs, URIrefs may be either **absolute** or **relative**
 - Note: the empty URI refers to the resource it’s in
RDF and Browsers use URIrefs to **identify things**, but interpret URIrefs slightly differently:
- Browsers also use URIrefs to **retrieve** things
- RDF uses URIrefs **only** to identify things and these might not even be retrievable

Linked Data best practice is to use HTTP URIs that return RDF data for every URI
Content Negotiation

- What does HTTP stand for?
What does HTTP stand for?

HTTP == HyperText Transfer Protocol

Let's Web client (browser, program) and server (apache) do many things (e.g., authentication)

Can specify format of data returned, e.g., HTML, XML, RDF serialized in any of several forms, etc.

Getting the same URL, http://dbpedia.org/resource/Alan_Turing, can produce content good for people or machines
About: Alan Turing

Alan Mathison Turing OBE FRS (ˈtjuərɪŋ; 23 June 1912 – 7 June 1954) was an English computer scientist, mathematician, logician, cryptanalyst and theoretical biologist. He was highly influential in the development of theoretical computer science, providing a formalisation of the concepts of algorithm and computation with the Turing machine, which can be considered a model of a general purpose computer. Turing is widely considered to be the father of theoretical computer science and artificial intelligence.
http://dbpedia.org/resource/Alan_Turing

- `curl -L http://dbpedia.org/resource/Alan_Turing`
 - -L says “follow redirects”
 - Returns default content version, typically html

- `curl -LH "Accept: application/rdf+xml" <url>`
 - Follow redirects
 - Return content as RDF serialized in xml if possible

- `curl -LH "Accept: text/turtle, application/rdf+xml, text/ntriples, application/ld+json" <url>`
 - Specifies 4 possible content forms in preference order
curl -LH "Accept: text/turtle" http://dbpedia.org/resource/Alan_Turing
@prefix dbo: <http://dbpedia.org/ontology/> .
@prefix dbr: <http://dbpedia.org/resource/> .
dbr:Jack_Copeland dbo:knownFor dbr:Alan_Turing .
dbr:Joan_Clarke dbo:partner dbr:Alan_Turing .
dbr:Hilary_Putnam dbo:influencedBy dbr:Alan_Turing .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix yago: <http://dbpedia.org/class/yago/> .
dbr:Alan_Turing rdf:type yago:WikicatBritishCryptographers ,
yago:WikicatEnglishInventors ,
yago:Theorist110706812 ,
yago:Decoder109995398 .
@prefix umbel-rc: <http://umbel.org/umbel/rc/> .
dbr:Alan_Turing rdf:type umbel-rc:PersonWithOccupation .
...
RDF Graphs
RDF Graphs

- RDF models statements by **nodes** and **arcs** in a graph.
- A **statement** is represented by a node for the **subject**, a node for the **object** and an arc for the **predicate** (subject => object).
- A **node** may be identified by a URIref or it can be a **literal** or a **blank node**.
- An **arc** is identified by a URIref.
- **Note:** We will draw RDF graphs as **directed graphs**.
 - But an arc can be the subject of an RDF statement.
 - :has_parent owl:inverseOf :has_child.
Consider the following statements:

- `http://www.example.org/index.html` has a creation-date whose value is August 16, 1999.
- `http://www.example.org/index.html` has a language whose value is English.
- `http://www.example.org/index.html` was created by `http://example.org/staffed/85740`
The RDF Graph of the Example

- Note: http://purl.org/dc/elements/1.1 is prefix for the Dublin Core vocabulary/ontology
- http://www.example.org/… is uses for examples
In terms of the relational model, an RDF statement is like a tuple in a relation \textit{Graph} with columns \textit{Subject}, \textit{Predicate}, \textit{Object}

For first-order logic, an RDF statement is like an \textbf{atomic formula} \textit{triple}(subj, pred, obj) where \textit{triple} is a FOL predicate and \textit{subj}, \textit{pred} and \textit{obj} are constants

More common view is to treat the triple’s predicate as a logical predicate: \textit{pred}(subj, obj)
Literals and QNames
What is 27? Number or string?
RDF has two kinds of literals: plain and typed.

Plain literals have a lexical form (their lexical value) and optionally a language tag, e.g.:
- "27", "Hello world"@en, "Bonjour le monde"@fr

RDF typed literals are formed by pairing a string with a URIref for a particular XMLS datatype, e.g.:
- "27"^^http://www.w3.org/2001/XMLSchema#integer
- "27"^^xsd:int
In practice, the most widely used data typing scheme is the one by XML Schema
 - But any externally defined data typing scheme is allowed in RDF documents
XML Schema predefines many data types
 - E.g. Booleans, integers, floating-point numbers, times, dates, etc.
XML Schema Datatypes

http://www.w3.org/TR/xmlschema-2/
The ntriples notation results in very long lines.

We can use an **XML qualified name (QName)** without brackets for a full URI reference:
- http://dbpedia.org/page/Alan_Turing
- dbp:Alan_Turing

Qnames have a **prefix** that’s been assigned to a namespace URI, a **colon** and a **local name**:
- How to assign a prefix to a URI varies by serialization.

The concepts of **names** and **namespaces** used in RDF originate in XML.
Topics Part 1

- Basic concepts of RDF
 - Resources, properties, values, statements, triples
 - URIs and URIrefs
 - RDF graphs
 - Literals, qnames
- Vocabularies and modeling
 - Vocabularies
 - Blank nodes, data modeling, types, reification
 - Lists, bags, collections
- Serialization of RDF graphs
 - XML, Turtle, Ntriples
- Critique of RDF