What is a triple store?

- A database for RDF triples
- Can ingest RDF in a variety of formats
- Supports a query language
 - SPARQL is the W3C recommendation
 - Other RDF query languages exist (e.g., RDQL)
 - Might or might not do inferencing
- Triples stored in memory in a persistent backend
- Persistence provided by a relational DBMS (e.g., mySQL) or a custom DB for efficiency.

Architectures

- Can be divided into several categories: In-memory, Native store, Non-native store
- In memory: RDF Graph is stored as triples in main memory
- Native store: Persistent storage systems with custom DBs, e.g.: JENA TDB, Sesame Native, Virtuoso, AllegroGraph, Oracle 11g
- Non-Native store: Persistent storage systems set-up to run on third party DBs, e.g., Jena SDB using mysql or postgres

Architecture trade-offs

- In memory is fastest, obviously, but load time has to be factored in
- Native stores are fast, scalable, and popular now
- Non-native stores may be better if you have a lot of updates and/or need good concurrency control
- See the W3C page on large triple stores for some data on scaling for many stores
Large triple stores in 2014

- AllegroGraph (1+Trillons)
- Stardog (50B)
- OpenLink Virtuoso v6.1 - 15-48x explicit, uncounted virtual/inferred
- 3.1 Benchmarks data sources
- 3.2 Older comments
- 4 BigOWL1M (12B explicit, 20B total), 100,000 queries per $1
- 4.1 Scalability and Loading Speed
- 4.2 Query Performance, Horizontal Scalability in the Cloud
- 4.3 Performance features
- 5 Galak 4store (15B)
- 6 Bigdata/Ri (12.7B)
- 7 YARIS2 (7B)
- 8 Jena TDB (1.7B)
- 9 Jena SDB (650M)
- 10 Mageras (600M)
- 11 RDF gateway (382M)
- 12 Jena with PostgreSQL (200M)
- 13 Kowari (100M)
- 14 Store with MySQL 3 (100M)
- 15 Sesame (70M)
- 16 Others who claim to go big
- 17 Questions
- 18 Related

Quads, Quints and Named Graphs

- Many triple stores support quads for named graphs
- A named graph is just an RDF with a URI name often called the context
- Such a triple store divides its data a default graph and zero or more additional named graphs
- SPARQL has support for named graphs
- De facto standards exist for representing quad data, e.g., n-quads and TriG (a turtle/N3 variant)
- AllegroGraph stores quints (S,P,O,C,ID), the ID can be used to attach metadata to a triple

Support for Reasoning

- Most triple stores don’t do much (or any) reasoning and use a simple model:
 - You do the reasoning to materialize all of the triples you want, which you then load into the store
 - Triple store provides query and update APIs, access control, SPARQL interface, efficient indexing, etc.
- Some do support reasoning, e.g.,
 - Jena has a native rules engine and an API for external reasoners (e.g., Pellet, Fact++)
 - Sesame has a native RDFS reasoner
 - Stardog supports OWL DL reasoning via query expansion

Example: Jena Framework

- An open software Java system originally developed by HP (2002-2009)
 - Moved to Apache when HP Labs discontinued its Semantic Web research program
 - https://jena.apache.org/
- Using the TDB native store, it can easily handle ~2B triples
- Good tutorials and documentation
- Has internal reasoners and can work with DIG compliant reasoners such as Pellet
- Supports a Native API and SPARQL via Fuseki
Example: Sesame

- Sesame is an open source RDF framework with support for RDFS inferencing and querying
- http://www.openrdf.org/
- Implemented in Java
- Query languages: SeRQL, RQL, RDQL and SPARQL
- Triples can be stored in memory, on disk, or in a RDBMS
- Has a native RDFS reasoner
- Easy to setup and use, but tops out at ~70M triples

Example: Stardog

- http://stardog.com/ by Clark and Parsia
- Pure Java RDF database ("quad store")
- Lightweight and very fast for in-memory use
- Reasoning support via Pellet for OWL DL and query rewriting for OWL 2 QL, EL & RL
- Command line interface and JAVA API
- Commercial, but has a free version good for modest projects
- ~50B triples on $10K server with 256G ram and 32 cores

Performance

- Much work on benchmarking of triple stores
- There are several standard benchmark sets
- Two key things are measured include:
 - Time to load and index triples
 - Time to answer various kinds of SPARQL queries
- The Berlin SPARQL Benchmarks evaluated 4store, BigData, BigOwlim, Jena TDB and Virtuoso in 2011 with 100M and 200M datasets.
- The numbers are “query mixes per hour”, so bigger is better

Load Time

```
<table>
<thead>
<tr>
<th>SUT</th>
<th>100M</th>
<th>200M</th>
</tr>
</thead>
<tbody>
<tr>
<td>4store</td>
<td>26.42s**</td>
<td>1:12:04*</td>
</tr>
<tr>
<td>BigData</td>
<td>1:03:47*</td>
<td>3:24:25</td>
</tr>
<tr>
<td>BigOwlim</td>
<td>17:22**</td>
<td>38:36**</td>
</tr>
<tr>
<td>TDB</td>
<td>1:14:48</td>
<td>2:45:13</td>
</tr>
<tr>
<td>Virtuoso</td>
<td>1:49:26**</td>
<td>3:59:38**</td>
</tr>
</tbody>
</table>
```

* The N-Triples version of the dataset was used.
** The dataset was split into 100 respectively 200 Turtle files and seeded with the DB.EBA.TTL.P function consecutively.
A triple store is an essential component of any system using RDF

- There are a number of good ones available, both open sourced and commercial
- Developing triple stores for large-scale parallel systems is still a research topic.