First-Order Logic: Review
RDFS/OWL Smantics

• The semantics of RDFS and OWL are based on First Order Logic

• Advantages:
 – Familiar, well defined, well understood, expressive, powerful
 – Good procedures/tools for inference

• Disadvantages
 – No agreement on how to extend for probabilities, fuzzy representations, higher order logics, etc.
 – Hard to process in parallel
First-order logic

• First-order logic (FOL) models the world in terms of
 – **Objects**, which are things with individual identities
 – **Properties** of objects that distinguish them from others
 – **Relations** that hold among sets of objects
 – **Functions**, which are a subset of relations where there is only one “value” for any given “input”

• Examples:
 – **Objects**: Students, lectures, companies, cars ...
 – **Relations**: Brother-of, bigger-than, outside, part-of, has-color, occurs-after, owns, visits, precedes, ...
 – **Properties**: blue, oval, even, large, ...
 – **Functions**: father-of, best-friend, second-half, more-than ...
User provides

- Constant symbols representing individuals in the world
 - Mary, 3, green

- Function symbols, map individuals to individuals
 - father_of(Mary) = John
 - color_of(Sky) = Blue

- Predicate symbols, map individuals to truth values
 - greater(5,3)
 - green(Grass)
 - color(Grass, Green)
FOL Provides

• Truth values
 – True, False

• Variable symbols
 – E.g., x, y, foo

• Connectives
 – Same as in propositional logic: not (¬), and (∧), or (∨), implies (→), iff (↔)

• Quantifiers
 – Universal ∀x or (Ax)
 – Existential ∃x or (Ex)
Sentences: built from terms and atoms

- A **term** (denoting a real-world individual) is a constant symbol, variable symbol, or n-place function of n terms, e.g.:
 - Constants: john, umbc
 - Variables: x, y, z
 - Functions: mother_of(john), phone(mother(x))

- Ground terms have no variables in them
 - **Ground**: john, father_of(father_of(john))
 - **Not Ground**: father_of(X)
Sentences: built from terms and atoms

• An atomic sentence (which has value true or false) is an n-place predicate of n terms, e.g.:
 – green(Kermit))
 – between(Philadelphia, Baltimore, DC)
 – loves(X, mother(X))

• A complex sentence is formed from atomic sentences connected by logical connectives:
 \(\neg P, P \lor Q, P \land Q, P \rightarrow Q, P \leftrightarrow Q \)
where \(P \) and \(Q \) are sentences.
Sentences: built from terms and atoms

• **quantified sentences** adds quantifiers \forall and \exists

 – $\forall x$ loves(x, mother(x))

 – $\exists x$ number(x) \land greater(x, 100), prime(x)

• A **well-formed formula (wff)** is a sentence containing no “free” variables, i.e., all variables are “bound” by either a universal or existential quantifiers

 ($\forall x$)P(x,y) has x bound as a universally quantified variable, but y is free
A BNF for FOL

S := <Sentence> ;
<Sentence> := <AtomicSentence> |
 <Sentence> <Connective> <Sentence> |
 <Quantifier> <Variable>,... <Sentence> |
 "NOT" <Sentence> |
 "(" <Sentence> ")" ;
<AtomicSentence> := <Predicate> "(" <Term>, ... ")" |
 <Term> "=" <Term> ;
<Term> := <Function> "(" < Term>, ... ")" |
 <Constant> |
 <Variable> ;
<Connective> := "AND" | "OR" | "IMPLIES" | "EQUIVALENT" ;
<Quantifier> := "EXISTS" | "FORALL" ;
<Constant> := "A" | "X1" | "John" | ... ;
<Variable> := "a" | "x" | "s" | ... ;
<Predicate> := "Before" | "HasColor" | "Raining" | ... ;
<Function> := "Mother" | "LeftLegOf" | ... ;
Quantifiers

• **Universal** quantification
 – $(\forall x)P(x)$ means P holds for all values of x in domain associated with variable
 – E.g., $(\forall x)\text{dolphin}(x) \rightarrow \text{mammal}(x)$

• **Existential** quantification
 – $(\exists x)P(x)$ means P holds for some value of x in domain associated with variable
 – E.g., $(\exists x)\text{mammal}(x) \land \text{lays_eggs}(x)$
 – This lets us make a statement about some object without naming it
Quantifiers (1)

• Universal quantifiers often used with implies to form rules:
 \((\forall x) \text{student}(x) \rightarrow \text{smart}(x)\) means “All students are smart”

• Universal quantification rarely used to make blanket statements about every individual in the world:
 \((\forall x) \text{student}(x) \land \text{smart}(x)\) means “Everyone in the world is a student and is smart”
Quantifiers (2)

• Existential quantifiers usually used with “and” to specify a list of properties about an individual:

 \((\exists x) \text{student}(x) \land \text{smart}(x)\) means “There is a student who is smart”

• Common mistake: represent this in FOL as:

 \((\exists x) \text{student}(x) \to \text{smart}(x)\)

• What does this sentence mean?

 – ??
Quantifier Scope

• FOL sentences have structure, like programs
• In particular, the variables in a sentence have a scope
• For example, suppose we want to say
 – “everyone who is alive loves someone”
 – $(\forall x) \text{alive}(x) \rightarrow (\exists y) \text{loves}(x,y)$
• Here’s how we scope the variables
 $(\forall x) \text{alive}(x) \rightarrow (\exists y) \text{loves}(x,y)$

Scope of x
Scope of y
Quantifier Scope

• Switching order of universal quantifiers does not change the meaning
 – $(\forall x)(\forall y)P(x,y) \iff (\forall y)(\forall x) P(x,y)$
 – “Dogs hate cats” (i.e., “all dogs hate all cats”)

• You can switch order of existential quantifiers
 – $(\exists x)(\exists y)P(x,y) \iff (\exists y)(\exists x) P(x,y)$
 – “A cat killed a dog”

• Switching order of universal and existential quantifiers does change meaning:
 – Everyone likes someone: $(\forall x)(\exists y) \text{likes}(x,y)$
 – Someone is liked by everyone: $(\exists y)(\forall x) \text{likes}(x,y)$
def verify1():
 # Everyone likes someone: (\forall x)(\exists y) \text{ likes}(x,y)
 for x in people():
 found = False
 for y in people():
 if likes(x,y):
 found = True
 break
 if not found:
 return False
 return True

Every person has at least one individual that they like.
def verify2():
 # Someone is liked by everyone: (∃y)(∀x) likes(x,y)
 for y in people():
 found = True
 for x in people():
 if not likes(x,y):
 found = False
 break
 if found
 return True
 return False

There is a person who is liked by every person in the universe.
Connections between \forall and \exists

• We can relate sentences involving \forall and \exists using extensions to De Morgan’s laws:

1. $(\forall x) \neg P(x) \iff \neg (\exists x) P(x)$
2. $\neg (\forall x) P(x) \iff (\exists x) \neg P(x)$
3. $(\forall x) P(x) \iff \neg (\exists x) \neg P(x)$
4. $(\exists x) P(x) \iff \neg (\forall x) \neg P(x)$

• Examples

1. All dogs don’t like cats \iff No dogs like cats
2. Not all dogs dance \iff There is a dog that doesn’t dance
3. All dogs sleep \iff There is no dog that doesn’t sleep
4. There is a dog that talks \iff Not all dogs can’t talk
Simple genealogy KB in FOL

Design a knowledge base using FOL that

– Has facts of immediate family relations, e.g., spouses, parents, etc.
– Defines of more complex relations (ancestors, relatives)
– Detect conflicts, e.g., you are your own parent
– Infers relations, e.g., grandparent from parent
– Answers queries about relationships between people
How do we approach this?

• Design an initial ontology of types, e.g.
 – e.g., person, man, woman, gender
• Add general individuals to ontology, e.g.
 – gender(male), gender(female)
• Extend ontology be defining relations, e.g.
 – spouse, has_child, has_parent
• Add general constraints to relations, e.g.
 – spouse(X,Y) => ~ X = Y
 – spouse(X,Y) => person(X), person(Y)
• Add FOL sentences for inference, e.g.
 – spouse(X,Y) ⇔ spouse(Y,X)
 – man(X) ⇔ person(X) ∧ has_gender(X, male)
Simple genealogy KB in FOL

• Has facts of immediate family relations, e.g., spouses, parents, etc.
• Has definitions of more complex relations (ancestors, relatives)
• Can detect conflicts, e.g., you are your own parent
• Can infer relations, e.g., grandparent from parent
• Can answer queries about relationships between people
Example: A simple genealogy KB by FOL

• Predicates:
 – parent(x, y), child(x, y), father(x, y), daughter(x, y), etc.
 – spouse(x, y), husband(x, y), wife(x, y)
 – ancestor(x, y), descendant(x, y)
 – male(x), female(y)
 – relative(x, y)

• Facts:
 – husband(Joe, Mary), son(Fred, Joe)
 – spouse(John, Nancy), male(John), son(Mark, Nancy)
 – father(Jack, Nancy), daughter(Linda, Jack)
 – daughter(Liz, Linda)
 – etc.
Example Axioms

\((\forall x,y) \text{ has}_\text{parent}(x,y) \iff \text{ has}_\text{child}(y,x)\)
\((\forall x,y) \text{ father}(x,y) \iff \text{ parent}(x,y) \land \text{ male}(x) \); similar for \text{ mother}(x,y)
\((\forall x,y) \text{ daughter}(x,y) \iff \text{ child}(x,y) \land \text{ female}(x) \); similar for \text{ son}(x,y)
\((\forall x,y) \text{ husband}(x,y) \iff \text{ spouse}(x,y) \land \text{ male}(x) \); similar for \text{ wife}(x,y)
\((\forall x,y) \text{ spouse}(x,y) \iff \text{ spouse}(y,x) \); spouse relation is symmetric
\((\forall x,y) \text{ parent}(x,y) \rightarrow \text{ ancestor}(x,y)\)
\((\forall x,y) (\exists z) \text{ parent}(x,z) \land \text{ ancestor}(z,y) \rightarrow \text{ ancestor}(x,y)\)
\((\forall x,y) \text{ descendant}(x,y) \iff \text{ ancestor}(y,x)\)
\((\forall x,y) (\exists z) \text{ ancestor}(z,x) \land \text{ ancestor}(z,y) \rightarrow \text{ relative}(x,y)\)
\((\forall x,y) \text{ spouse}(x,y) \rightarrow \text{ relative}(x,y) \); related by marriage
\((\forall x,y) (\exists z) \text{ relative}(z,x) \land \text{ relative}(z,y) \rightarrow \text{ relative}(x,y)\); transitive
\((\forall x,y) \text{ relative}(x,y) \iff \text{ relative}(y,x)\); symmetric
• Rules for genealogical relations

(∀x,y) parent(x, y) ↔ child(y, x)
(∀x,y) father(x, y) ↔ parent(x, y) ∧ male(x) ; similarly for mother(x, y)
(∀x,y) daughter(x, y) ↔ child(x, y) ∧ female(x) ; similarly for son(x, y)
(∀x,y) husband(x, y) ↔ spouse(x, y) ∧ male(x) ; similarly for wife(x, y)
(∀x,y) spouse(x, y) ↔ spouse(y, x) ; spouse relation is symmetric
(∀x,y) parent(x, y) → ancestor(x, y)
(∀x,y)(∃z) parent(x, z) ∧ ancestor(z, y) → ancestor(x, y)
(∀x,y) descendant(x, y) ↔ ancestor(y, x)
(∀x,y)(∃z) ancestor(z, x) ∧ ancestor(z, y) → relative(x, y)
; related by common ancestry
(∀x,y) spouse(x, y) → relative(x, y) ; related by marriage
(∀x,y)(∃z) relative(z, x) ∧ relative(z, y) → relative(x, y) ; transitive
(∀x,y) relative(x, y) ↔ relative(y, x) ; symmetric

• Queries

– ancestor(Jack, Fred) ; the answer is yes
– relative(Liz, Joe) ; the answer is yes
– relative(Nancy, Matthew) ; no answer, no under closed world assumption
– (∃z) ancestor(z, Fred) ∧ ancestor(z, Liz)
Axioms, definitions and theorems

• **Axioms**: facts and rules that capture the (important) facts and concepts about a domain; axioms can be used to prove **theorems**
 – Mathematicians dislike unnecessary (dependent) axioms, i.e. ones that can be derived from others
 – Dependent axioms can make reasoning faster, however
 – Choosing a good set of axioms is a design problem

• A **definition** of a predicate is of the form “$p(X) \leftrightarrow \ldots$” and can be decomposed into two parts
 – **Necessary** description: “$p(x) \rightarrow \ldots$”
 – **Sufficient** description “$p(x) \leftarrow \ldots$”
 – Some concepts have definitions (triangle) and some do not (person)
More on definitions

Example: define father(x, y) by parent(x, y) and male(x)

• parent(x, y) is a necessary (but not sufficient) description of father(x, y)
 father(x, y) → parent(x, y)

• parent(x, y) ^ male(x) ^ age(x, 35) is a sufficient (but not necessary) description of father(x, y):
 father(x, y) ← parent(x, y) ^ male(x) ^ age(x, 35)

• parent(x, y) ^ male(x) is a necessary and sufficient description of father(x, y)
 parent(x, y) ^ male(x) ↔ father(x, y)
Notational differences

• Different symbols for and, or, not, implies, ...
 \(\forall \ \exists \ \Rightarrow \ \Leftrightarrow \ \land \ \lor \ \neg \ \supset \)
 \(\neg p \lor (q \land r) \)
 \(\neg p \land (q \ast r) \)

• Prolog
 cat(X) :- furry(X), meows (X), has(X, claws)

• Lispy notations
 (forall ?x (implies (and (furry ?x)
 (meows ?x)
 (has ?x claws))
 (cat ?x)))
A example of FOL in use

• Semantics of W3C’s semantic web stack (RDF, RDFS, OWL) is defined in FOL
• OWL Full is equivalent to FOL
• Other OWL profiles support a subset of FOL and are more efficient
• However, the semantics of schema.org is only defined in natural language text
• ...and Google’s knowledge Graph probably (!) uses probabilities
FOL Summary

• First order logic (FOL) introduces predicates, functions and quantifiers

• More expressive, but reasoning more complex
 – Reasoning in propositional logic is NP hard, FOL is semi-decidable

• Common AI knowledge representation language
 – Other KR languages (e.g., OWL) are often defined by mapping them to FOL

• FOL variables range over objects
 – HOL variables range over functions, predicates or sentences