
Spark Essentials

03: Intro Spark Apps

lecture/lab: 45 min

Intro apps, showing examples in both  
Scala and Python…!

Let’s start with the basic concepts in:!

spark.apache.org/docs/latest/scala-
programming-guide.html!

using, respectively:!

./bin/spark-shell!

./bin/pyspark!

alternatively, with IPython Notebook:!
 IPYTHON_OPTS="notebook --pylab inline" ./bin/pyspark

Spark Essentials:

First thing that a Spark program does is create
a SparkContext object, which tells Spark how
to access a cluster!

In the shell for either Scala or Python, this is
the sc variable, which is created automatically!

Other programs must use a constructor to
instantiate a new SparkContext!

Then in turn SparkContext gets used to create
other variables

Spark Essentials: SparkContext

scala> sc!
res: spark.SparkContext = spark.SparkContext@470d1f30

Spark Essentials: SparkContext

>>> sc!
<pyspark.context.SparkContext object at 0x7f7570783350>

Scala:

Python:

The master parameter for a SparkContext
determines which cluster to use

Spark Essentials: Master

master description

local
run Spark locally with one worker thread  
(no parallelism)

local[K]
run Spark locally with K worker threads  
(ideally set to # cores)!

spark://HOST:PORT
connect to a Spark standalone cluster;  
PORT depends on config (7077 by default)!

mesos://HOST:PORT
connect to a Mesos cluster;  
PORT depends on config (5050 by default)!

spark.apache.org/docs/latest/cluster-
overview.html

Spark Essentials: Master

Cluster ManagerDriver Program

SparkContext

Worker Node

Exectuor cache

tasktask

Worker Node

Exectuor cache

tasktask

1. connects to a cluster manager which
allocate resources across applications!

2. acquires executors on cluster nodes –
worker processes to run computations
and store data!

3. sends app code to the executors!

4. sends tasks for the executors to run

Spark Essentials: Master

Cluster ManagerDriver Program

SparkContext

Worker Node

Exectuor cache

tasktask

Worker Node

Exectuor cache

tasktask

Resilient Distributed Datasets (RDD) are the
primary abstraction in Spark – a fault-tolerant
collection of elements that can be operated on  
in parallel!

There are currently two types: !

• parallelized collections – take an existing Scala
collection and run functions on it in parallel!

• Hadoop datasets – run functions on each record
of a file in Hadoop distributed file system or any
other storage system supported by Hadoop

Spark Essentials: RDD

• two types of operations on RDDs:  
transformations and actions!

• transformations are lazy  
(not computed immediately)!

• the transformed RDD gets recomputed  
when an action is run on it (default)!

• however, an RDD can be persisted into  
storage in memory or disk

Spark Essentials: RDD

scala> val data = Array(1, 2, 3, 4, 5)!
data: Array[Int] = Array(1, 2, 3, 4, 5)!
!
scala> val distData = sc.parallelize(data)!
distData: spark.RDD[Int] = spark.ParallelCollection@10d13e3e

Spark Essentials: RDD

>>> data = [1, 2, 3, 4, 5]!
>>> data!
[1, 2, 3, 4, 5]!
!
>>> distData = sc.parallelize(data)!
>>> distData!
ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:229

Scala:

Python:

Spark can create RDDs from any file stored in HDFS
or other storage systems supported by Hadoop, e.g.,
local file system, Amazon S3, Hypertable, HBase, etc.!

Spark supports text files, SequenceFiles, and any
other Hadoop InputFormat, and can also take a
directory or a glob (e.g. /data/201404*)

Spark Essentials: RDD

action value

RDD
RDD
RDD

transformations RDD

scala> val distFile = sc.textFile("README.md")!
distFile: spark.RDD[String] = spark.HadoopRDD@1d4cee08

Spark Essentials: RDD

>>> distFile = sc.textFile("README.md")!
14/04/19 23:42:40 INFO storage.MemoryStore: ensureFreeSpace(36827) called
with curMem=0, maxMem=318111744!
14/04/19 23:42:40 INFO storage.MemoryStore: Block broadcast_0 stored as
values to memory (estimated size 36.0 KB, free 303.3 MB)!
>>> distFile!
MappedRDD[2] at textFile at NativeMethodAccessorImpl.java:-2

Scala:

Python:

Transformations create a new dataset from  
an existing one!

All transformations in Spark are lazy: they  
do not compute their results right away –
instead they remember the transformations
applied to some base dataset!

• optimize the required calculations!

• recover from lost data partitions

Spark Essentials: Transformations

Spark Essentials: Transformations

transformation description

map(func)
return a new distributed dataset formed by passing  
each element of the source through a function func

filter(func)

return a new dataset formed by selecting those
elements of the source on which func returns true!

flatMap(func)

similar to map, but each input item can be mapped  
to 0 or more output items (so func should return a  
Seq rather than a single item)

sample(withReplacement,
fraction, seed)

sample a fraction fraction of the data, with or without
replacement, using a given random number generator
seed

union(otherDataset)
return a new dataset that contains the union of the
elements in the source dataset and the argument

distinct([numTasks]))
return a new dataset that contains the distinct elements
of the source dataset

Spark Essentials: Transformations

transformation description

groupByKey([numTasks])
when called on a dataset of (K, V) pairs, returns a
dataset of (K, Seq[V]) pairs

reduceByKey(func,
[numTasks])

when called on a dataset of (K, V) pairs, returns  
a dataset of (K, V) pairs where the values for each  
key are aggregated using the given reduce function

sortByKey([ascending],
[numTasks])

when called on a dataset of (K, V) pairs where K
implements Ordered, returns a dataset of (K, V)  
pairs sorted by keys in ascending or descending order,
as specified in the boolean ascending argument

join(otherDataset,
[numTasks])

when called on datasets of type (K, V) and (K, W),
returns a dataset of (K, (V, W)) pairs with all pairs  
of elements for each key

cogroup(otherDataset,
[numTasks])

when called on datasets of type (K, V) and (K, W),
returns a dataset of (K, Seq[V], Seq[W]) tuples –
also called groupWith

cartesian(otherDataset)
when called on datasets of types T and U, returns a
dataset of (T, U) pairs (all pairs of elements)

val distFile = sc.textFile("README.md")!
distFile.map(l => l.split(" ")).collect()!
distFile.flatMap(l => l.split(" ")).collect()

Spark Essentials: Transformations

distFile = sc.textFile("README.md")!
distFile.map(lambda x: x.split(' ')).collect()!
distFile.flatMap(lambda x: x.split(' ')).collect()

Scala:

Python:

distFile is a collection of lines

Spark Essentials: Transformations

Scala:

Python:
closures

val distFile = sc.textFile("README.md")!
distFile.map(l => l.split(" ")).collect()!
distFile.flatMap(l => l.split(" ")).collect()

distFile = sc.textFile("README.md")!
distFile.map(lambda x: x.split(' ')).collect()!
distFile.flatMap(lambda x: x.split(' ')).collect()

Spark Essentials: Transformations

Scala:

Python:
closures

looking at the output, how would you  
compare results for map() vs. flatMap() ?

val distFile = sc.textFile("README.md")!
distFile.map(l => l.split(" ")).collect()!
distFile.flatMap(l => l.split(" ")).collect()

distFile = sc.textFile("README.md")!
distFile.map(lambda x: x.split(' ')).collect()!
distFile.flatMap(lambda x: x.split(' ')).collect()

Spark Essentials: Transformations

Using closures is now possible in Java 8 with
lambda expressions support, see the tutorial:!
databricks.com/blog/2014/04/14/Spark-with-
Java-8.html

action value

RDD
RDD
RDD

transformations RDD

Spark Essentials: Transformations

JavaRDD<String> distFile = sc.textFile("README.md");!
!
// Map each line to multiple words!
JavaRDD<String> words = distFile.flatMap(!
 new FlatMapFunction<String, String>() {!
 public Iterable<String> call(String line) {!
 return Arrays.asList(line.split(" "));!
 }!
});

Java 7:

JavaRDD<String> distFile = sc.textFile("README.md");!
JavaRDD<String> words =!
 distFile.flatMap(line -> Arrays.asList(line.split(" ")));

Java 8:

Spark Essentials: Actions

action description

reduce(func)
aggregate the elements of the dataset using a function
func (which takes two arguments and returns one),  
and should also be commutative and associative so  
that it can be computed correctly in parallel

collect()
return all the elements of the dataset as an array at  
the driver program – usually useful after a filter or
other operation that returns a sufficiently small subset
of the data

count() return the number of elements in the dataset

first() return the first element of the dataset – similar to
take(1)

take(n)
return an array with the first n elements of the dataset
– currently not executed in parallel, instead the driver
program computes all the elements

takeSample(withReplacement,
fraction, seed)

return an array with a random sample of num elements
of the dataset, with or without replacement, using the
given random number generator seed

Spark Essentials: Actions

action description

saveAsTextFile(path)

write the elements of the dataset as a text file (or set  
of text files) in a given directory in the local filesystem,
HDFS or any other Hadoop-supported file system.
Spark will call toString on each element to convert  
it to a line of text in the file

saveAsSequenceFile(path)

write the elements of the dataset as a Hadoop
SequenceFile in a given path in the local filesystem,
HDFS or any other Hadoop-supported file system.  
Only available on RDDs of key-value pairs that either
implement Hadoop's Writable interface or are
implicitly convertible to Writable (Spark includes
conversions for basic types like Int, Double, String,
etc).

countByKey() only available on RDDs of type (K, V). Returns a  
`Map` of (K, Int) pairs with the count of each key

foreach(func)
run a function func on each element of the dataset –
usually done for side effects such as updating an
accumulator variable or interacting with external
storage systems

val f = sc.textFile("README.md")!
val words = f.flatMap(l => l.split(" ")).map(word => (word, 1))!
words.reduceByKey(_ + _).collect.foreach(println)

Spark Essentials: Actions

from operator import add!
f = sc.textFile("README.md")!
words = f.flatMap(lambda x: x.split(' ')).map(lambda x: (x, 1))!
words.reduceByKey(add).collect()

Scala:

Python:

Spark can persist (or cache) a dataset in
memory across operations!

Each node stores in memory any slices of it
that it computes and reuses them in other
actions on that dataset – often making future
actions more than 10x faster!

The cache is fault-tolerant: if any partition  
of an RDD is lost, it will automatically be
recomputed using the transformations that
originally created it

Spark Essentials: Persistence

Spark Essentials: Persistence

transformation description

MEMORY_ONLY
Store RDD as deserialized Java objects in the JVM.  
If the RDD does not fit in memory, some partitions  
will not be cached and will be recomputed on the fly
each time they're needed. This is the default level.

MEMORY_AND_DISK
Store RDD as deserialized Java objects in the JVM.  
If the RDD does not fit in memory, store the partitions
that don't fit on disk, and read them from there when
they're needed.

MEMORY_ONLY_SER
Store RDD as serialized Java objects (one byte array  
per partition). This is generally more space-efficient  
than deserialized objects, especially when using a fast
serializer, but more CPU-intensive to read.

MEMORY_AND_DISK_SER
Similar to MEMORY_ONLY_SER, but spill partitions
that don't fit in memory to disk instead of recomputing
them on the fly each time they're needed.

DISK_ONLY Store the RDD partitions only on disk.

MEMORY_ONLY_2,
MEMORY_AND_DISK_2, etc

Same as the levels above, but replicate each partition  
on two cluster nodes.

val f = sc.textFile("README.md")!
val w = f.flatMap(l => l.split(" ")).map(word => (word, 1)).cache()!
w.reduceByKey(_ + _).collect.foreach(println)

Spark Essentials: Persistence

from operator import add!
f = sc.textFile("README.md")!
w = f.flatMap(lambda x: x.split(' ')).map(lambda x: (x, 1)).cache()!
w.reduceByKey(add).collect()

Scala:

Python:

Broadcast variables let programmer keep a
read-only variable cached on each machine
rather than shipping a copy of it with tasks!

For example, to give every node a copy of  
a large input dataset efficiently!

Spark also attempts to distribute broadcast
variables using efficient broadcast algorithms
to reduce communication cost

Spark Essentials: Broadcast Variables

val broadcastVar = sc.broadcast(Array(1, 2, 3))!
broadcastVar.value

Spark Essentials: Broadcast Variables

broadcastVar = sc.broadcast(list(range(1, 4)))!
broadcastVar.value

Scala:

Python:

Accumulators are variables that can only be
“added” to through an associative operation!

Used to implement counters and sums,
efficiently in parallel!

Spark natively supports accumulators of
numeric value types and standard mutable
collections, and programmers can extend  
for new types!

Only the driver program can read an
accumulator’s value, not the tasks

Spark Essentials: Accumulators

val accum = sc.accumulator(0)!
sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum += x)!
!
accum.value

Spark Essentials: Accumulators

accum = sc.accumulator(0)!
rdd = sc.parallelize([1, 2, 3, 4])!
def f(x):!
 global accum!
 accum += x!
!
rdd.foreach(f)!
!
accum.value

Scala:

Python:

val accum = sc.accumulator(0)!
sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum += x)!
!
accum.value

Spark Essentials: Accumulators

accum = sc.accumulator(0)!
rdd = sc.parallelize([1, 2, 3, 4])!
def f(x):!
 global accum!
 accum += x!
!
rdd.foreach(f)!
!
accum.value

Scala:

Python:
driver-side

val pair = (a, b)!
 !
 pair._1 // => a!
 pair._2 // => b

Spark Essentials: (K, V) pairs

pair = (a, b)!
 !
 pair[0] # => a!
 pair[1] # => b

Scala:

Python:

Tuple2 pair = new Tuple2(a, b);!
 !
 pair._1 // => a!
 pair._2 // => b

Java:

Spark Essentials: API Details

For more details about the Scala/Java API:!

spark.apache.org/docs/latest/api/scala/
index.html#org.apache.spark.package!

!

For more details about the Python API:!

spark.apache.org/docs/latest/api/python/

