
1

Chapter 1

NoSQL Databases

Johannes Zollmann

1.1 Introduction

Over the last years, distributed web applications have be-
come more and more popular. Especially widely used ser-
vices like Facebook, Google or Amazon have to store and
process large amounts of data. Obviously such data can
not be handled by single-node systems, thus distributed
storage solutions are needed. Possibilities to scale out a rela-
tional database management system (RDBMS), i.e. increas-
ing the number of nodes of the system, are often very lim-
ited, or not given at all [9].

A wide range of non-relational storage solutions have
evolved, in order to overcome those scalability limits. Dy-
namo, developed by Amazon [14], Google’s BigTable [10]
or Hadoop, used by Facebook [6], are examples for dis-
tributed, non-relational databases. Such database systems
are subsumed under the term “NoSQL”.

Here the principles of NoSQL systems and their main dif-
ferences to RDBMS’s are discussed. For this at first a short
introduction to the relational model is given in Section 1.2.
Afterwards Section 1.3 introduces basic concepts of NoSQL
systems, and gives an overview of the NoSQL landscape.

2 1 NoSQL Databases

Section 1.4 finally analyses the NoSQL database MongoDB.

1.2 Basics

Here some basic characteristics of traditional, SQL-based
systems are analysed, in order to understand the require-
ments different NoSQL approaches are trying to satisfy.

1.2.1 Relational databases

In [12] Edgar F. Codd, the inventor of the relational model,
identifies three basic components defining a data model:

1. Data structure - the data types a model is build of

2. Operators - the available operations to retrieve or ma-
nipulate data from this structure

3. Integrity rules - the general rules defining consistent
states of the data model

The structure of a relational data model is mainly given
by relations, attributes, tuples and (primary) keys. Rela-
tions are typically visualized as tables, with attributes as
columns and tuples as rows. The order of the attributes and
tuples is not defined by the structure, thus can be arbitrary.
An example for a relational model represented by tables is
given in Figure 1.1.

Basic operations defined by the relational model are SE-
LECT operations (including projections and joins) to re-
trieve data, as well as manipulative operations like INSERT,
UPDATE and DELETE.

Two different sets of integrity rules can be distinguished for
a relational model. Constraints like uniqueness of primary
keys ensure the integrity within a single relation. Addition-
ally there are referential integrity rules between different
relations.

1.2 Basics 3

Figure 1.1: Example for a relational database used to store
information about people, things they like and other people
they know. Since the relations between people and things,
as well between people and people are many-to-many rela-
tions, two join tables have to be used.

1.2.2 ACID properties

An important concept in relational database systems are
transactions. In [18] Jim Gray defined three properties of
a transaction: atomicity, consistency and durability. Later
Härder and Reuter abbreviated those properties - together
with a fourth one: isolation - by the acronym ACID [20].
Even though all four ACID properties are seen as key prop-
erties of transactions on relational databases, consistency is
particularly interesting when investigating the scalability
of a system.

1.2.3 Scalability

The scalability of a system is its capability to cope with a
growing workload [5]. Basically a system can be scaled in
two different directions: vertically and horizontally. Vertical
scaling (“scale up”) means increasing the capacity of the
system’s nodes. This can be achieved by using more pow-
erful hardware. In contrary, a system is scaled horizontally
(“scaled out”) if more nodes are added [22].

Vertical scaling of systems is typically limited by the avail-
ability and affordability of better hardware, and tends to
be inefficient. In contrary, scaling systems horizontally al-
lows for a better performance, while using cheaper hard-
ware [22]. Though, horizontally scaling often is a non-
trivial task. This is mainly because guarantees of consis-

4 1 NoSQL Databases

tency, as demanded by the ACID properties, are hard to be
achieved on distributed systems, which will be discussed
in more detail in Section 1.3.2.

1.3 NoSQL concepts

The term “NoSQL” was first used by Carlo Strozzi to
name a database management system (DBMS) he devel-
oped. This system explicitly avoided SQL as querying
language, while it was still based on a relational model
[26]. Nowadays the term “NoSQL” is often interpreted as
“Not only SQL” and stands for (mostly distributed) non-
relational storage systems.

Here at first an overview of the types of NoSQL systems is
given. Afterwards the consistency guarantees characteris-
tic to NoSQL databases are discussed. Finally the MapRe-
duce model is introduced, which provides a framework for
efficiently processing huge amounts of data and is an im-
portant component of different NoSQL implementations.

1.3.1 Types of NoSQL systems

In [16, pp.6] Edlich et al. identify four classes of NoSQL
systems as “Core-NoSQL” systems: Key-Value stores, Wide
column stores, Graph databases and Document stores. Other
NoSQL-related storage solutions, e.g. Object- or XML-
databases, are called “soft-NoSQL” systems. An extensive
list of known NoSQL implementations, categorized accord-
ing to this terminology can be found in [15]. Here only the
“Core” classes will be explained further.

Key-Value stores

Key-Value based storage systems are basically associative
arrays, consisting of keys and values. Each key has to be
unique to provide non-ambiguous identification of values.

1.3 NoSQL concepts 5

While keys are mostly simple objects, values can be lists,
sets or also hashes again, allowing for more complex data
structures [16, p.7]. Figure 1.2 shows an example.

Figure 1.2: Example data represented in a Key-Value store.
The stored value (here of type String) typically can not be
interpreted by the storage system.

Typical operations offered by Key-Value stores are those
known to programmers from Hash-Table implementations
[9]:

• INSERT new Key-Value pairs

• LOOKUP value for a specified key

• DELETE key and the value associated with it

The simple model provided by a Key-Value store allows it
to work very fast and efficiently. The price of this reduced
complexity is a reduced flexibility of querying possibilities.

A famous representative of Key-Value stores is Amazon’s
Dynamo. Dynamo offers an efficient and highly scalable
storage solution, at the cost of a very limited querying in-
terface, as can be seen in [14].

Wide column stores

Storage systems of this class are also called Extensible Record
Stores [9]. A wide column store can be seen as a Key-Value

6 1 NoSQL Databases

store, with a two-dimensional key: A stored value is refer-
enced by a column key and a row key. The key can be further
extended by a timestamp, as is the case in Google’s BigTable
[10]. Depending on the implementation, there are more
extensions to the key possible, mostly called “keyspaces”
or “domains”. Thus keys in wide column stores can have
many dimensions, resulting in a structure similar to a multi-
dimensional, associative array.

An example for storing data in a wide column system using
a two-dimensional key is given in Figure 1.3.

Figure 1.3: Example data represented in a wide column
store. Here “person” is used as column key and each per-
son’s name as row key. Like in a Key-Value store, the stored
value is not further interpreted by the system.

Graph databases

As the name indicates, in systems of this category data is
represented by graphs.

Graph databases are best suited for representing data with
a high, yet flexible number of interconnections, especially
when information about those interconnections is at least as
important as the represented data [2]. Such information can
be, for example, social relations or geographic data. Fig-
ure 1.4 shows how data can be represented by a graph.

Graph databases allow for queries on the graph structure,
e.g. on relations between nodes or shortest paths. Imple-
mentations of graph databases can support such queries ef-
ficiently by using well studied graph algorithms [19][11].

1.3 NoSQL concepts 7

Figure 1.4: Example data represented as graph. Edges can
be used to store relationship information, while other at-
tributes of the objects have to be stored in the vertices.

Document stores

In a document store, data is stored in so-called documents.
Here the term documents refers to arbitrary data in some
structured data format. Examples for used formats are
JSON [3], BSON (see Section 1.4.1) or XML [21]. While the
type of data format is typically fixed by the document store,
the structure is flexible. In a JSON-based document store,
for example, documents with completely different sets of
attributes can be stored together, as long as they are valid
JSON documents. In Figure 1.5 data stored in a JSON-based
document database is illustrated.

The chosen data format can be interpreted by the storage
system. This allows the system to offer fine-grained read
and write operations on properties of a stored document,
in contrary to a Key-Value system, where the stored value
typically is not further understood by the system.

Section 1.4 introduces MongoDB, a representative of the
class of document stores. Another widely used storage sys-
tem of this category is CouchDB, which extensively relies
on the MapReduce framework for data querying [3].

8 1 NoSQL Databases

Figure 1.5: Example data represented in a document store.
Here JSON is used as data format. Since the format is un-
derstood by the system, direct queries on attributes (e.g.
“name” or “age”) are possible.

1.3.2 Eventual consistency

An important difference between relational databases and
NoSQL systems are the provided consistency models.
NoSQL systems have to soften the ACID guarantees given
by relational transactions, in order to allow horizontal scal-
ability. To understand the reason for this, at first three desir-
able properties of horizontally distributed systems are ex-
plained:

Consistency Consistency in a distributed system requires
a total order on all operations throughout all nodes of the
system [17]. This would, for example, be the case if after
a successful write operation, all subsequent read operations
return the written value, regardless on which node the op-
erations are executed.

Availability A system satisfies availability, if all opera-
tions, executed on a node of the system, terminate in a re-
sponse [17].

Partition tolerance A system is called partitioned, if there
are at least two sets of nodes, such that all nodes of the

1.3 NoSQL concepts 9

same set can communicate, while all messages sent be-
tween nodes of different sets are lost. An example for a
partitioned system would be a system where one node gets
unreachable due to a network error. A system is partition
tolerant if it is available and consistent, even though arbi-
trary many internal messages get lost [17].

In 2000, Brewer stated the conjecture, that no web service
can guarantee all those properties (consistency, availability
and partition tolerance) at the same time [7]. Two years later
this conjecture, referred to as CAP THEOREM or BREWER

THEOREM, has been formalized and proven by Gilbert and
Lynch [17].

In practice this means, distributed databases have to for-
feit one of those properties. To avoid partitions, one would
have to make sure that each single node of a system is al-
ways reachable by the other nodes, which can not be guar-
anteed in big distributed systems [27]. Thus for scalable
systems the decision remains between availability and con-
sistency.

In [25] Pritchett suggests BASE as an alternative to ACID.
BASE stands for basically available, soft state, eventually con-
sistent and focuses mainly on availability of a system, at the
cost of loosening the consistency guarantees. The eventu-
ally consistency property of a BASE system accepts periods
where clients might read inconsistent (i.e. out-dated) data.
Though, it guarantees that those periods will eventually
end. A system with BASE properties is no longer limited
by the CAP THEOREM, thus offers a high horizontal scala-
bility. An example of the length of inconsistent periods for
BASE systems can be found in [4], where Amazon’s S3 stor-
age system is analysed. There the authors observe strongly
fluctuating times of inconsistency, from few milliseconds
up to several seconds.

1.3.3 MapReduce

MapReduce, originated by Google, is a framework, as
well as a programming model, designed to process huge
amounts of data using user-defined logic. The primary goal

10 1 NoSQL Databases

of the original MapReduce framework was to provide an
abstraction for processing data, without having to deal with
the demands coming with scalability, like parallelization or
load balancing [13]. Input to a MapReduce execution is a
dictionary, i.e. a dataset consisting of key/value pairs. The
output is again a dictionary. The user has to implement
two functions, MAP and REDUCE, and provide them to the
framework.

A MAP function receives a key and a value and returns a list
of key/value pairs as intermediate result. The MapReduce
framework invokes the given MAP function on all entries
of the input dictionary. Since all those function calls are
independent of each other, the framework can parallelize
the processing as needed. For this the input data is split into
several chunks, each handled by a separate MAP process.

Within the intermediate results, all key/value pairs are
combined using the keys, such that each key maps to a list
of values. Now for each key the REDUCE function is in-
voked. As input it receives a key, as well as the list of all
values belonging to that key. The REDUCE function pro-
cesses the values and combines them to a final result value,
that gets associated with the key. Again all invocations of
REDUCE can be executed in parallel.

The basic scheme of an execution of the MapReduce frame-
work is sketched in Figure 1.6, while Figure 1.7 gives a sim-
plified example.

1.4 MongoDB

MongoDB is an open source document database, initiated
by the software company 10gen [1], which also offers com-
mercial support. As the name MongoDB - derived from the
word “humongous” - indicates, its main goal is to handle
huge amounts of data. While MongoDB is implemented in
C++, it uses JavaScript as a querying language.

In the following sections, the data model provided by Mon-
goDB is analysed, considering the three basic components

1.4 MongoDB 11

Figure 1.6: Model of the MapReduce framework. The split
input data is handed to several processes running the MAP

function. Return values of the map functions are combined
to intermediate results. For each intermediate result, one
REDUCE process is executed.

Figure 1.7: Example using MapReduce to analyse which
things are liked by how many people. A list of people and
there likings serves as input data. Here the input data is
split into three segments, which all are processed in paral-
lel.

of data models as defined before. Most of those sections
are based on information from the current version of Mon-
goDB’s manual [23], which can be recommended for fur-
ther reading.

1.4.1 Data structure

The basic building blocks used by MongoDB are collec-
tions. The relational equivalent to a collection is a relation
(or table). In contrary to relations, a collection does not
enforce a fixed schema, but can hold completely different
documents. However, giving all documents of a collection
a somewhat similar structure can allow for easier and more

12 1 NoSQL Databases

efficient querying of data [16, p.133].

Documents are comparable to relational tuples and can
be seen as associative arrays or hashes. MongoDB stores
and transmits documents in BSON (Binary JSON) format.
A BSON document is mostly a binary representation of a
JSON document, extended by information for easier pars-
ing of the data (e.g. length prefixes). Like JSON objects,
BSON documents consist of attribute-value pairs, where
each value can be a simple type (e.g. string or integer),
again a complex BSON object, or a collection consisting of
either simple types or objects. Additionally BSON extends
the JSON specification by some simple types, e.g. types for
dates and times. The complete BSON specification can be
found in [8].

1.4.2 Operators

Reading data

One important operation to read data from a MongoDB col-
lection is FIND. When used without additional parameters,
it returns all documents from a collection. The FIND opera-
tion accepts a BSON formatted criteria object as parameter.
MongoDB filters documents by the given criteria, return-
ing only query results matching all specified attributes and
values. Additionally, the criteria object can contain special
conditional operators defined by MongoDB. Such opera-
tors range from simple comparisons (e.g. “$lt” for “lesser
than”) and regular expressions up to complex user-defined
JavaScript functions, which are evaluated by the database.
Listing 1.1 shows several examples for querying data using
FIND.

Another way of querying data is using the MAPREDUCE

operator of MongoDB. This operator expects a MAP and
a REDUCE function, both given as JavaScript functions of
a specified format. As explained in Section 1.3.3, first the
MAP function is executed on all documents. Afterwards the
intermediate results are processed by the REDUCE function.
The return values of the REDUCE step represent the query

1.4 MongoDB 13

1 db.people.find({name: ’Alice’})
2 // {_id: 1234, name: ’Alice’, age: 20, likes: [’

books’, ’pets’], knows: [’Bob’]}
3
4 db.people.find({age: 25})
5 // {_id: 5678, name: ’Bob’, age: 25, likes: [’books

’]}
6
7 db.people.find({age: {$lt: 30}})
8 // [{_id: 1234, name: ’Alice’, ... }, {_id: 5678,

name: ’Bob’, ... }]
9

10 db.people.find({knows: {$exists: true}})
11 // {_id: 1234, name: ’Alice’, ... }
12
13 db.people.find({likes: {$size: 1}})
14 // {_id: 5678, name: ’Bob’, ... }

Listing 1.1: Example queries using FIND. The queried
“people” collection is assumed to have two entries: “Alice”
and “Bob”.

result. An example can be seen in Listing 1.2.

Manipulating data

The INSERT operation can be used to add documents to a
collection. The document to be inserted is handed to the
operation in BSON format. Before storing the given docu-
ment, MongoDB adds an additional “ id” attribute, with a
value unique throughout the collection. This can be seen as
primary key, uniquely identifying the document.

To change existing objects of a collection, the UPDATE oper-
ation can be used. It expects again a criteria object, as well
an object representing the changes to be applied. If the lat-
ter object represents a normal document, the first document
matching the given criteria gets completely replaced. To
only change individual attributes of matched documents,
MongoDB provides additional modifier syntax. Some ex-
amples are given in Listing 1.3.

Deletion of documents is possible using the REMOVE oper-
ation. The documents to be deleted can again be addressed

14 1 NoSQL Databases

1 map = function() {
2 for (i in this.likes) {
3 emit(this.likes[i], {count: 1});
4 }
5 };
6
7 reduce = function(key, values) {
8 var total = 0;
9 for (i in values) {

10 total += values[i].count
11 }
12 return {count: total}
13 };
14
15 db.people.mapReduce(map, reduce)
16 // [{ books: {count: 3} },
17 // { pets: {count: 4} }]

Listing 1.2: MongoDB implementation of the MapReduce
example from Figure 1.7 (output simplified).

by a criteria object.

1.4.3 Integrity Rules

In contrary to relational systems, offering a wide range of
integrity rules, MongoDB only offers possibilities to en-
force the uniqueness of documents. As already mentioned,
each document has a unique “ id” attribute. Additional at-
tributes, as well as combinations of attributes, can be de-
fined as unique indexes too (see Section 1.4.4). Unique
indexes ensure, that values for the specified attributes are
unique throughout a collection.

Since MongoDB has no build-in support for joining dif-
ferent documents, it also offers no rules for referential in-
tegrity at all.

1.4.4 Indexing

Database indexes are important data structures, when it
comes to optimizing read queries. In relational databases,

1.4 MongoDB 15

1 db.people.insert({name: ’Alice’, age: 20})
2 db.people.update({name: ’Alice’}, {name: ’Eve’})
3 db.people.find({name: ’Eve’})
4 // {_id: 123, name: ’Eve’}
5
6 db.people.insert({name: ’Alice’, age: 20})
7 db.people.update({name: ’Alice’}, {$set: {name: ’Eve

’}})
8 db.people.find({name: ’Eve’})
9 // {_id: 456, name: ’Eve’, age: 20}

10
11 db.people.insert({name: ’Alice’, age: 20})
12 db.people.update({name: ’Alice’}, {$inc: {age: 5}})
13 db.people.find({name: ’Alice’})
14 // {_id: 789, name: ’Alice’, age: 25}

Listing 1.3: Examples for manipulating documents in
MongoDB using INSERT and UPDATE.

the primary key column is typically indexed by default.
Same is true for the “ id” attribute of a MongoDB docu-
ment. In order to allow efficient data access, MongoDB
offers the possibility to create arbitrary many different in-
dexes for a collection. Basically any attribute of a document
can be indexed, as well as any combination of attributes.
This extends to attributes within sub-documents (i.e. at-
tributes of attributes).

As discussed before, the structure of a document is not
fixed by the collection. Since indexes are created per collec-
tion, there may be documents within a collection, which do
not have a specific attribute, even though an index for the
attribute exists. MongoDB treats such documents as having
the attribute with a value of null. For collections containing
strongly varying documents, this causes a significant over-
head. Therefore MongoDB offers another indexing option,
called sparse indexing. If an index is sparse, it ignores all
documents of a collection, that do not have the indexed at-
tribute. This allows for better performance and reduces the
storage overhead, since no “empty” indexes have to be cre-
ated and maintained.

As known from relational systems, even though indexes
make read operations more efficient, this comes at the cost
of more expensive write operations. Whenever a document
is created, updated or deleted, the indexes have to be up-

16 1 NoSQL Databases

dated. Hence, especially for write-intensive applications,
creating too many indexes might significantly reduce the
systems performance.

1.4.5 Scalability

Since MongoDB does not handle any references between
collections, any read or write request from a client always
involves exactly one collection. So scaling applications with
many smaller collections vertically can be achieved by just
putting different collections on different machines.

However, vertical scaling gets more complicated when
handling huge amounts of documents stored in a single col-
lection. MongoDB offers a mechanism called “sharding” to
distribute collections over multiple nodes, transparently for
the application. For this the number of shards to be used,
as well as a so-called shard key have to be specified.

A shard key is an attribute that all documents of a collec-
tion, which should be sharded, must have. The shard key
is used to split the collection into multiple chunks. A chunk
is a subset of the collection, holding all documents, which
have values for the shard key within a certain range [24].

So if attribute a is defined as shard key and a collection has
the n chunks (ci)i=1..n, then each chunk ci contains all doc-
uments with values v for attribute a, such that mini ≤ v <
maxi. The values for mini and maxi , i.e. the shard key
ranges for each chunk, are determined by the system, in
such a way that all documents can be distributed equally
across the available shards. Whenever a chunk gets bigger
than a predefined threshold, the system splits it again and
the chunks get redistributed, to ensure an equal load on all
shards again.

The efficiency of read and write access to a sharded collec-
tion depends significantly on the choice of the shard key.
Using an attribute as shard key, that has the same value
for most documents, obviously prevents the chunk hold-
ing those documents from being split. Thus the collection
can not be distributed equally across all shards [24]. An

1.5 Summary 17

attribute “home country”, for example, would make a bad
shard key, if all people in the collection most likely come
from the same country. In that case MongoDB could not
create an evenly distributed sharding.

1.4.6 Consistency

As long as for each shard there is only one server handling
all read and write requests, MongoDB offers strong consis-
tency on single entities. That means, all reads and writes on
single documents are atomic and FIND operations involv-
ing only single documents are guaranteed to reflect the lat-
est state of the database.

Additionally, FIND operations in MongoDB can specify an
option to allow reads from secondaries. In that case the query
may be answered by a replicated (i.e. slave) node, if repli-
cation is used. In this way the availability of the database
can be increased. Though, this comes at the cost of con-
sistency, as demanded by the CAP THEOREM. Since the
replicated node may still have outdated information about
the requested entity, here only eventual consistency can be
guaranteed.

1.5 Summary

The relational data model, with its complex set of operators
and integrity rules, offers a very flexible storage solution,
that can be adopted to many problems. Additionally, re-
lational transactions, having ACID properties, give strong
guarantees on consistency. NoSQL storage solutions, in
contrary, typically aim at providing simple, yet very effi-
cient, solutions for specific problems. One goal of many
NoSQL systems is to provide high scalability. For that the
strong consistency guarantees, characteristic for relational
systems, have to be relaxed, in favour of the system’s avail-
ability. This results in the notion of eventual consistency.

From the wide landscape of NoSQL systems, MongoDB, a

18 1 NoSQL Databases

document store, has been introduced in more detail. While
relational systems work with fixed data models, a docu-
ment store allows to store arbitrary objects together, as long
as they use the same data format. Though, document stores
usually do not support complex relations between stored
objects. One way to overcome this would be to accept de-
normalized data, i.e. to store related information redun-
dantly. While other NoSQL systems, like CouchDB, have
limited possibilities for querying data and enforce the us-
age of MapReduce for data processing, MongoDB offers a
flexible API with a JSON-like criteria syntax. Though, this
still does not reach the high flexibility relational systems are
providing via the SQL language.

It is obvious, that there is not one NoSQL system, that can
be used as generic storage solution, or to replace a rela-
tional database system. Rather a suitable system to solve
the respective task has to be picked. If fast data access is
needed and querying via a single key is sufficient, Key-
Value stores are an excellent choice. More complex key
structures are possible using Wide column stores. A graph
database suits best for storing highly interrelated, yet sim-
ple objects, where queries refer to the relationship structure.
In contrary, querying relations in document-oriented sys-
tems can be more complicated. Though, document stores
allow storing objects with complex structure in a scalable
way and offer efficient mechanisms to query on that struc-
ture.

19

Bibliography

[1] 10gen. The mongodb company. http://www.
10gen.com/, July 2012.

[2] R. Angles and C. Gutierrez. Survey of graph database
models. ACM Comput. Surv., 40(1):1:1–1:39, Feb. 2008.

[3] Apache. Couchdb - a database for the web. http:
//couchdb.apache.org/, July 2012.

[4] D. Bermbach and S. Tai. Eventual consistency: How
soon is eventual? an evaluation of amazon s3’s consis-
tency behavior. In Proceedings of the 6th Workshop on
Middleware for Service Oriented Computing, MW4SOC
’11, pages 1:1–1:6, New York, NY, USA, 2011. ACM.

[5] A. B. Bondi. Characteristics of scalability and their im-
pact on performance. In Proceedings of the 2nd interna-
tional workshop on Software and performance, WOSP ’00,
pages 195–203, New York, NY, USA, 2000. ACM.

[6] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkarup-
pan, N. Spiegelberg, H. Kuang, K. Ranganathan,
D. Molkov, A. Menon, S. Rash, R. Schmidt, and
A. Aiyer. Apache hadoop goes realtime at facebook.
In Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data, SIGMOD ’11, pages
1071–1080, New York, NY, USA, 2011. ACM.

[7] E. A. Brewer. Towards robust distributed systems.
In Symposium on Principles of Distributed Computing
(PODC), 2000.

[8] BSON. Bson - binary json. http://bsonspec.org,
July 2012.

http://www.10gen.com/
http://www.10gen.com/
http://couchdb.apache.org/
http://couchdb.apache.org/
http://bsonspec.org

20 Bibliography

[9] R. Cattell. Scalable sql and nosql data stores. SIGMOD
Rec., 39(4):12–27, May 2011.

[10] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: a distributed storage system for
structured data. In Proceedings of the 7th symposium on
Operating systems design and implementation, OSDI ’06,
pages 205–218, Berkeley, CA, USA, 2006. USENIX As-
sociation.

[11] J. Cheng, Y. Ke, and W. Ng. Efficient query process-
ing on graph databases. ACM Trans. Database Syst.,
34(1):2:1–2:48, Apr. 2009.

[12] E. F. Codd. Data models in database management.
SIGMOD Rec., 11(2):112–114, June 1980.

[13] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, Jan. 2008.

[14] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: amazon’s highly
available key-value store. SIGOPS Oper. Syst. Rev.,
41(6):205–220, Oct. 2007.

[15] S. Edlich. Nosql databases. http://
nosql-database.org/, July 2012.

[16] S. Edlich, A. Friedland, J. Hampe, and B. Brauer.
NoSQL: Einstieg in die Welt nichtrelationaler Web 2.0
Datenbanken. Hanser Fachbuchverlag, 10 2010.

[17] S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant
web services. SIGACT News, 33(2):51–59, June 2002.

[18] J. Gray. The transaction concept: virtues and limita-
tions (invited paper). In Proceedings of the seventh inter-
national conference on Very Large Data Bases - Volume 7,
VLDB ’81, pages 144–154. VLDB Endowment, 1981.

[19] R. H. Güting. Graphdb: Modeling and querying
graphs in databases. In Proceedings of the 20th Inter-
national Conference on Very Large Data Bases, VLDB ’94,

http://nosql-database.org/
http://nosql-database.org/

Bibliography 21

pages 297–308, San Francisco, CA, USA, 1994. Morgan
Kaufmann Publishers Inc.

[20] T. Haerder and A. Reuter. Principles of transaction-
oriented database recovery. ACM Comput. Surv.,
15(4):287–317, Dec. 1983.

[21] H. Lu, J. X. Yu, G. Wang, S. Zheng, H. Jiang, G. Yu, and
A. Zhou. What makes the differences: benchmarking
xml database implementations. ACM Trans. Internet
Technol., 5(1):154–194, Feb. 2005.

[22] M. Michael, J. Moreira, D. Shiloach, and R. Wis-
niewski. Scale-up x scale-out: A case study us-
ing nutch/lucene. In Parallel and Distributed Process-
ing Symposium, 2007. IPDPS 2007. IEEE International,
pages 1 –8, march 2007.

[23] MongoDB. The mongodb manual. http://docs.
mongodb.org/manual/, July 2012.

[24] MongoDB. Sharding - mongodb. http:
//www.mongodb.org/display/DOCS/Sharding,
July 2012.

[25] D. Pritchett. Base: An acid alternative. Queue, 6(3):48–
55, May 2008.

[26] C. Strozzi. Nosql relational database management sys-
tem. http://www.strozzi.it/cgi-bin/CSA/
tw7/I/en_US/NoSQL/HomePage, July 2012.

[27] W. Vogels. Eventually consistent. Queue, 6(6):14–19,
Oct. 2008.

http://docs.mongodb.org/manual/
http://docs.mongodb.org/manual/
http://www.mongodb.org/display/DOCS/Sharding
http://www.mongodb.org/display/DOCS/Sharding
http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/NoSQL/Home Page
http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/NoSQL/Home Page

Typeset August 20, 2012

	NoSQL Databases
	Introduction
	Basics
	Relational databases
	ACID properties
	Scalability

	NoSQL concepts
	Types of NoSQL systems
	Key-Value stores
	Wide column stores
	Graph databases
	Document stores

	Eventual consistency
	MapReduce

	MongoDB
	Data structure
	Operators
	Reading data
	Manipulating data

	Integrity Rules
	Indexing
	Scalability
	Consistency

	Summary

	Bibliography

