
HAN 16-ch09-393-442-9780123814791 2011/6/1 3:22 Page 408 #16

408 Chapter 9 Classification: Advanced Methods

with corresponding output unit values. Similarly, the sets of input values and activation
values are studied to derive rules describing the relationship between the input layer
and the hidden “layer units”? Finally, the two sets of rules may be combined to form
IF-THEN rules. Other algorithms may derive rules of other forms, including M-of-N
rules (where M out of a given N conditions in the rule antecedent must be true for the
rule consequent to be applied), decision trees with M-of-N tests, fuzzy rules, and finite
automata.

Sensitivity analysis is used to assess the impact that a given input variable has on a
network output. The input to the variable is varied while the remaining input variables
are fixed at some value. Meanwhile, changes in the network output are monitored. The
knowledge gained from this analysis form can be represented in rules such as “IF X
decreases 5% THEN Y increases 8%.”

9.3 Support Vector Machines

In this section, we study support vector machines (SVMs), a method for the classifi-
cation of both linear and nonlinear data. In a nutshell, an SVM is an algorithm that
works as follows. It uses a nonlinear mapping to transform the original training data
into a higher dimension. Within this new dimension, it searches for the linear opti-
mal separating hyperplane (i.e., a “decision boundary” separating the tuples of one class
from another). With an appropriate nonlinear mapping to a sufficiently high dimen-
sion, data from two classes can always be separated by a hyperplane. The SVM finds this
hyperplane using support vectors (“essential” training tuples) and margins (defined by
the support vectors). We will delve more into these new concepts later.

“I’ve heard that SVMs have attracted a great deal of attention lately. Why?” The first
paper on support vector machines was presented in 1992 by Vladimir Vapnik and col-
leagues Bernhard Boser and Isabelle Guyon, although the groundwork for SVMs has
been around since the 1960s (including early work by Vapnik and Alexei Chervonenkis
on statistical learning theory). Although the training time of even the fastest SVMs
can be extremely slow, they are highly accurate, owing to their ability to model com-
plex nonlinear decision boundaries. They are much less prone to overfitting than other
methods. The support vectors found also provide a compact description of the learned
model. SVMs can be used for numeric prediction as well as classification. They have
been applied to a number of areas, including handwritten digit recognition, object
recognition, and speaker identification, as well as benchmark time-series prediction
tests.

9.3.1 The Case When the Data Are Linearly Separable
To explain the mystery of SVMs, let’s first look at the simplest case—a two-class prob-
lem where the classes are linearly separable. Let the data set D be given as (X1, y1),
(X2, y2), . . . , (X|D|, y|D|), where Xi is the set of training tuples with associated class
labels, yi . Each yi can take one of two values, either +1 or �1 (i.e., yi 2 {+1, � 1}),

HAN 16-ch09-393-442-9780123814791 2011/6/1 3:22 Page 409 #17

9.3 Support Vector Machines 409

A2

A1

Class 1, y=+1 (buys_ computer= yes)

Class 2, y=−1 (buys_ computer=no)

Figure 9.7 The 2-D training data are linearly separable. There are an infinite number of possible
separating hyperplanes or “decision boundaries,” some of which are shown here as dashed
lines. Which one is best?

corresponding to the classes buys computer = yes and buys computer = no, respectively.
To aid in visualization, let’s consider an example based on two input attributes, A1 and
A2, as shown in Figure 9.7. From the graph, we see that the 2-D data are linearly separa-
ble (or “linear,” for short), because a straight line can be drawn to separate all the tuples
of class +1 from all the tuples of class �1.

There are an infinite number of separating lines that could be drawn. We want to find
the “best” one, that is, one that (we hope) will have the minimum classification error on
previously unseen tuples. How can we find this best line? Note that if our data were 3-D
(i.e., with three attributes), we would want to find the best separating plane. Generalizing
to n dimensions, we want to find the best hyperplane. We will use “hyperplane” to refer to
the decision boundary that we are seeking, regardless of the number of input attributes.
So, in other words, how can we find the best hyperplane?

An SVM approaches this problem by searching for the maximum marginal hyper-
plane. Consider Figure 9.8, which shows two possible separating hyperplanes and their
associated margins. Before we get into the definition of margins, let’s take an intuitive
look at this figure. Both hyperplanes can correctly classify all the given data tuples. Intu-
itively, however, we expect the hyperplane with the larger margin to be more accurate
at classifying future data tuples than the hyperplane with the smaller margin. This is
why (during the learning or training phase) the SVM searches for the hyperplane with
the largest margin, that is, the maximum marginal hyperplane (MMH). The associated
margin gives the largest separation between classes.

HAN 16-ch09-393-442-9780123814791 2011/6/1 3:22 Page 410 #18

410 Chapter 9 Classification: Advanced Methods

Class 1, y=+1 (buys_computer= yes)

Class 2, y=−1 (buys_computer=no)

Class 1, y=+1 (buys_computer= yes)

Class 2, y=−1 (buys_computer=no)

A1

A2

Larg
e m

arg
in

A1

A2

Small margin

(a) (b)

Figure 9.8 Here we see just two possible separating hyperplanes and their associated margins. Which
one is better? The one with the larger margin (b) should have greater generalization accuracy.

Getting to an informal definition of margin, we can say that the shortest distance
from a hyperplane to one side of its margin is equal to the shortest distance from the
hyperplane to the other side of its margin, where the “sides” of the margin are parallel
to the hyperplane. When dealing with the MMH, this distance is, in fact, the shortest
distance from the MMH to the closest training tuple of either class.

A separating hyperplane can be written as

W · X + b = 0, (9.12)

where W is a weight vector, namely, W = {w1, w2, . . . , wn}; n is the number of attributes;
and b is a scalar, often referred to as a bias. To aid in visualization, let’s consider two input
attributes, A1 and A2, as in Figure 9.8(b). Training tuples are 2-D (e.g., X = (x1, x2)),
where x1 and x2 are the values of attributes A1 and A2, respectively, for X. If we think of
b as an additional weight, w0, we can rewrite Eq. (9.12) as

w0 + w1x1 + w2x2 = 0. (9.13)

Thus, any point that lies above the separating hyperplane satisfies

w0 + w1x1 + w2x2 > 0. (9.14)

Similarly, any point that lies below the separating hyperplane satisfies

w0 + w1x1 + w2x2 < 0. (9.15)

HAN 16-ch09-393-442-9780123814791 2011/6/1 3:22 Page 411 #19

9.3 Support Vector Machines 411

The weights can be adjusted so that the hyperplanes defining the “sides” of the margin
can be written as

H1 : w0 + w1x1 + w2x2 � 1 for yi = +1, (9.16)

H2 : w0 + w1x1 + w2x2  �1 for yi = �1. (9.17)

That is, any tuple that falls on or above H1 belongs to class +1, and any tuple that falls
on or below H2 belongs to class �1. Combining the two inequalities of Eqs. (9.16) and
(9.17), we get

yi(w0 + w1x1 + w2x2) � 1, 8i. (9.18)

Any training tuples that fall on hyperplanes H1 or H2 (i.e., the “sides” defining the
margin) satisfy Eq. (9.18) and are called support vectors. That is, they are equally close
to the (separating) MMH. In Figure 9.9, the support vectors are shown encircled with
a thicker border. Essentially, the support vectors are the most difficult tuples to classify
and give the most information regarding classification.

From this, we can obtain a formula for the size of the maximal margin. The distance
from the separating hyperplane to any point on H1 is 1

||W|| , where ||W|| is the Euclidean

norm of W , that is,
p

W · W .2 By definition, this is equal to the distance from any point
on H2 to the separating hyperplane. Therefore, the maximal margin is 2

||W|| .

Class 1, y=+1 (buys_ computer= yes)

Class 2, y=−1 (buys_ computer= no)

A1

A2

Lar
ge

 m
ar

gi
n

Figure 9.9 Support vectors. The SVM finds the maximum separating hyperplane, that is, the one with
maximum distance between the nearest training tuples. The support vectors are shown with
a thicker border.

2If W = {w1, w2, . . . , wn}, then
p

W · W =
q

w2
1 + w2

2 + ·· · + w2
n .

HAN 16-ch09-393-442-9780123814791 2011/6/1 3:22 Page 412 #20

412 Chapter 9 Classification: Advanced Methods

“So, how does an SVM find the MMH and the support vectors?” Using some “fancy
math tricks,” we can rewrite Eq. (9.18) so that it becomes what is known as a constrained
(convex) quadratic optimization problem. Such fancy math tricks are beyond the scope
of this book. Advanced readers may be interested to note that the tricks involve rewrit-
ing Eq. (9.18) using a Lagrangian formulation and then solving for the solution using
Karush-Kuhn-Tucker (KKT) conditions. Details can be found in the bibliographic notes
at the end of this chapter (Section 9.10).

If the data are small (say, less than 2000 training tuples), any optimization software
package for solving constrained convex quadratic problems can then be used to find
the support vectors and MMH. For larger data, special and more efficient algorithms
for training SVMs can be used instead, the details of which exceed the scope of this
book. Once we’ve found the support vectors and MMH (note that the support vectors
define the MMH!), we have a trained support vector machine. The MMH is a linear class
boundary, and so the corresponding SVM can be used to classify linearly separable data.
We refer to such a trained SVM as a linear SVM.

“Once I’ve got a trained support vector machine, how do I use it to classify test (i.e.,
new) tuples?” Based on the Lagrangian formulation mentioned before, the MMH can be
rewritten as the decision boundary

d(XT) =
lX

i=1

yi↵iXiXT + b0, (9.19)

where yi is the class label of support vector Xi ; XT is a test tuple; ↵i and b0 are numeric
parameters that were determined automatically by the optimization or SVM algorithm
noted before; and l is the number of support vectors.

Interested readers may note that the ↵i are Lagrangian multipliers. For linearly sepa-
rable data, the support vectors are a subset of the actual training tuples (although there
will be a slight twist regarding this when dealing with nonlinearly separable data, as we
shall see in the following).

Given a test tuple, XT , we plug it into Eq. (9.19), and then check to see the sign of the
result. This tells us on which side of the hyperplane the test tuple falls. If the sign is posi-
tive, then XT falls on or above the MMH, and so the SVM predicts that XT belongs
to class +1 (representing buys computer = yes, in our case). If the sign is negative,
then XT falls on or below the MMH and the class prediction is �1 (representing
buys computer = no).

Notice that the Lagrangian formulation of our problem (Eq. 9.19) contains a dot
product between support vector Xi and test tuple XT . This will prove very useful for
finding the MMH and support vectors for the case when the given data are nonlinearly
separable, as described further in the next section.

Before we move on to the nonlinear case, there are two more important things to
note. The complexity of the learned classifier is characterized by the number of support
vectors rather than the dimensionality of the data. Hence, SVMs tend to be less prone
to overfitting than some other methods. The support vectors are the essential or critical
training tuples—they lie closest to the decision boundary (MMH). If all other training

HAN 16-ch09-393-442-9780123814791 2011/6/1 3:22 Page 413 #21

9.3 Support Vector Machines 413

tuples were removed and training were repeated, the same separating hyperplane would
be found. Furthermore, the number of support vectors found can be used to compute
an (upper) bound on the expected error rate of the SVM classifier, which is independent
of the data dimensionality. An SVM with a small number of support vectors can have
good generalization, even when the dimensionality of the data is high.

9.3.2 The Case When the Data Are Linearly Inseparable
In Section 9.3.1 we learned about linear SVMs for classifying linearly separable data, but
what if the data are not linearly separable, as in Figure 9.10? In such cases, no straight
line can be found that would separate the classes. The linear SVMs we studied would
not be able to find a feasible solution here. Now what?

The good news is that the approach described for linear SVMs can be extended to
create nonlinear SVMs for the classification of linearly inseparable data (also called non-
linearly separable data, or nonlinear data for short). Such SVMs are capable of finding
nonlinear decision boundaries (i.e., nonlinear hypersurfaces) in input space.

“So,” you may ask, “how can we extend the linear approach?” We obtain a nonlinear
SVM by extending the approach for linear SVMs as follows. There are two main steps.
In the first step, we transform the original input data into a higher dimensional space
using a nonlinear mapping. Several common nonlinear mappings can be used in this
step, as we will further describe next. Once the data have been transformed into the
new higher space, the second step searches for a linear separating hyperplane in the new
space. We again end up with a quadratic optimization problem that can be solved using
the linear SVM formulation. The maximal marginal hyperplane found in the new space
corresponds to a nonlinear separating hypersurface in the original space.

A1

A2

Class 1, y=+1 (buys_computer= yes)

Class 2, y=−1 (buys_computer= no)

Figure 9.10 A simple 2-D case showing linearly inseparable data. Unlike the linear separable data of
Figure 9.7, here it is not possible to draw a straight line to separate the classes. Instead, the
decision boundary is nonlinear.

HAN 16-ch09-393-442-9780123814791 2011/6/1 3:22 Page 414 #22

414 Chapter 9 Classification: Advanced Methods

Example 9.2 Nonlinear transformation of original input data into a higher dimensional space.
Consider the following example. A 3-D input vector X = (x1, x2, x3) is mapped into
a 6-D space, Z, using the mappings �1(X) = x1, �2(X) = x2, �3(X) = x3, �4(X) =
(x1)

2, �5(X) = x1x2, and �6(X) = x1x3. A decision hyperplane in the new space is
d(Z) = WZ + b, where W and Z are vectors. This is linear. We solve for W and
b and then substitute back so that the linear decision hyperplane in the new (Z)
space corresponds to a nonlinear second-order polynomial in the original 3-D input
space:

d(Z) = w1x1 + w2x2 + w3x3 + w4(x1)
2 + w5x1x2 + w6x1x3 + b

= w1z1 + w2z2 + w3z3 + w4z4 + w5z5 + w6z6 + b.

But there are some problems. First, how do we choose the nonlinear mapping to
a higher dimensional space? Second, the computation involved will be costly. Refer to
Eq. (9.19) for the classification of a test tuple, XT . Given the test tuple, we have to com-
pute its dot product with every one of the support vectors.3 In training, we have to
compute a similar dot product several times in order to find the MMH. This is espe-
cially expensive. Hence, the dot product computation required is very heavy and costly.
We need another trick!

Luckily, we can use another math trick. It so happens that in solving the quadratic
optimization problem of the linear SVM (i.e., when searching for a linear SVM in the
new higher dimensional space), the training tuples appear only in the form of dot prod-
ucts, �(Xi) · �(Xj), where �(X) is simply the nonlinear mapping function applied to
transform the training tuples. Instead of computing the dot product on the transformed
data tuples, it turns out that it is mathematically equivalent to instead apply a kernel
function, K(Xi , Xj), to the original input data. That is,

K(Xi , Xj) = �(Xi) · �(Xj). (9.20)

In other words, everywhere that �(Xi) · �(Xj) appears in the training algorithm, we can
replace it with K(Xi ,Xj). In this way, all calculations are made in the original input space,
which is of potentially much lower dimensionality! We can safely avoid the mapping—it
turns out that we don’t even have to know what the mapping is! We will talk more later
about what kinds of functions can be used as kernel functions for this problem.

After applying this trick, we can then proceed to find a maximal separating hyper-
plane. The procedure is similar to that described in Section 9.3.1, although it involves
placing a user-specified upper bound, C, on the Lagrange multipliers, ↵i . This upper
bound is best determined experimentally.

“What are some of the kernel functions that could be used?” Properties of the kinds of
kernel functions that could be used to replace the dot product scenario just described

3The dot product of two vectors, XT = (xT
1 , xT

2 , . . . , xT
n) and Xi = (xi1, xi2, . . . , xin) is xT

1 xi1 + xT
2 xi2

+ ·· · + xT
n xin. Note that this involves one multiplication and one addition for each of the n dimensions.

HAN 16-ch09-393-442-9780123814791 2011/6/1 3:22 Page 415 #23

9.4 Classification Using Frequent Patterns 415

have been studied. Three admissible kernel functions are

Polynomial kernel of degree h: K(Xi , Xj) = (Xi · Xj + 1)h

Gaussian radial basis function kernel: K(Xi , Xj) = e�kXi�Xjk2/2� 2

Sigmoid kernel: K(Xi , Xj) = tanh(Xi · Xj � �)

Each of these results in a different nonlinear classifier in (the original) input space.
Neural network aficionados will be interested to note that the resulting decision hyper-
planes found for nonlinear SVMs are the same type as those found by other well-known
neural network classifiers. For instance, an SVM with a Gaussian radial basis func-
tion (RBF) gives the same decision hyperplane as a type of neural network known as
a radial basis function network. An SVM with a sigmoid kernel is equivalent to a simple
two-layer neural network known as a multilayer perceptron (with no hidden layers).

There are no golden rules for determining which admissible kernel will result in the
most accurate SVM. In practice, the kernel chosen does not generally make a large
difference in resulting accuracy. SVM training always finds a global solution, unlike
neural networks, such as backpropagation, where many local minima usually exist
(Section 9.2.3).

So far, we have described linear and nonlinear SVMs for binary (i.e., two-class) clas-
sification. SVM classifiers can be combined for the multiclass case. See Section 9.7.1 for
some strategies, such as training one classifier per class and the use of error-correcting
codes.

A major research goal regarding SVMs is to improve the speed in training and testing
so that SVMs may become a more feasible option for very large data sets (e.g., millions
of support vectors). Other issues include determining the best kernel for a given data set
and finding more efficient methods for the multiclass case.

9.4 Classification Using Frequent Patterns

Frequent patterns show interesting relationships between attribute–value pairs that
occur frequently in a given data set. For example, we may find that the attribute–value
pairs age = youth and credit = OK occur in 20% of data tuples describing AllElectronics
customers who buy a computer. We can think of each attribute–value pair as an item,
so the search for these frequent patterns is known as frequent pattern mining or frequent
itemset mining. In Chapters 6 and 7, we saw how association rules are derived from
frequent patterns, where the associations are commonly used to analyze the purchas-
ing patterns of customers in a store. Such analysis is useful in many decision-making
processes such as product placement, catalog design, and cross-marketing.

In this section, we examine how frequent patterns can be used for classification.
Section 9.4.1 explores associative classification, where association rules are generated
from frequent patterns and used for classification. The general idea is that we can search
for strong associations between frequent patterns (conjunctions of attribute–value

