Bias-Variance Theory

- Decompose Error Rate into components, some of which can be measured on unlabeled data
- Bias-Variance Decomposition for Regression
- Bias-Variance Decomposition for Classification
- Bias-Variance Analysis of Learning Algorithms
- Effect of Bagging on Bias and Variance
- Effect of Boosting on Bias and Variance
- Summary and Conclusion

Bias-Variance Analysis in Regression

- True function is $y=f(x)+\varepsilon$
- where ε is normally distributed with zero mean and standard deviation σ.
- Given a set of training examples, $\left\{\left(x_{i}, y_{i}\right)\right\}$, we fit an hypothesis $h(x)=w \cdot x+b$ to the data to minimize the squared error

$$
\Sigma_{\mathrm{i}}\left[\mathrm{y}_{\mathrm{i}}-\mathrm{h}\left(\mathrm{x}_{\mathrm{i}}\right)\right]^{2}
$$

Example: 20 points $y=x+2 \sin (1.5 x)+N(0,0.2)$

50 fits (20 examples each)

Bias-Variance Analysis

\square Now, given a new data point x^{*} (with observed value $\left.y^{*}=f\left(x^{*}\right)+\varepsilon\right)$, we would like to understand the expected prediction error

$$
E\left[\left(y^{*}-h\left(x^{*}\right)\right)^{2}\right]
$$

Classical Statistical Analysis

- Imagine that our particular training sample S is drawn from some population of possible training samples according to P(S).
- Compute $E_{p}\left[\left(y^{*}-h\left(x^{*}\right)\right)^{2}\right]$
\square Decompose this into "bias", "variance", and "noise"

Lemma

\square Let Z be a random variable with probability distribution $P(Z)$

- Let $\underline{Z}=E_{p}[Z]$ be the average value of Z.
- Lemma: $E\left[(Z-Z)^{2}\right]=E\left[Z^{2}\right]-Z^{2}$ $E\left[(Z-Z)^{2}\right]=E\left[Z^{2}-2 Z \underline{Z}+\underline{Z}^{2}\right]$
$=E\left[Z^{2}\right]-2 E[Z] Z+\underline{Z}^{2}$
$=E\left[Z^{2}\right]-2 \underline{Z}^{2}+\underline{Z}^{2}$
$=E\left[Z^{2}\right]-Z^{2}$
- Corollary: $\mathrm{E}\left[Z^{2}\right]=\mathrm{E}\left[(\mathrm{Z}-\underline{Z})^{2}\right]+\underline{Z}^{2}$

Bias-Variance-Noise Decomposition

$$
\begin{aligned}
& E\left[\left(h\left(x^{*}\right)-y^{*}\right)^{2}\right]=E\left[h\left(x^{*}\right)^{2}-2 h\left(x^{*}\right) y^{*}+y^{* 2}\right] \\
& =E\left[h\left(x^{*}\right)^{2}\right]-2 E\left[h\left(x^{*}\right)\right] E\left[y^{*}\right]+E\left[y^{*}\right] \\
& =E\left[\left(h\left(x^{*}\right)-h\left(x^{*}\right)\right)^{2}\right]+h\left(x^{*}\right)^{2} \quad \text { (lemma) } \\
& -2 \mathrm{~h}\left(\mathrm{x}^{*}\right) \mathrm{f}\left(\mathrm{x}^{*}\right) \\
& +E\left[\left(y^{*}-f\left(x^{*}\right)\right)^{2}\right]+f\left(x^{*}\right)^{2} \quad \text { (lemma) } \\
& \begin{array}{ll}
=E\left[\left(h\left(x^{*}\right)-h\left(x^{*}\right)\right)^{2}\right]+ & {[\text { varian }} \\
\left(h\left(x^{*}\right)-f\left(x^{*}\right)\right)^{2}+ & {\left[\text { bias }{ }^{2}\right]}
\end{array} \\
& E\left[\left(y^{*}-f\left(x^{*}\right)\right)^{2}\right] \quad \text { [noise] }
\end{aligned}
$$

Derivation (continued)

E[$\left.\left(h\left(x^{*}\right)-y^{*}\right)^{2}\right]=$

$$
\begin{aligned}
= & E\left[\left(h\left(x^{*}\right)-h\left(x^{*}\right)\right)^{2}\right]+ \\
& \left(h\left(x^{*}\right)-f\left(x^{*}\right)\right)^{2}+ \\
& E\left[\left(y^{*}-f\left(x^{*}\right)\right)^{2}\right] \\
= & \operatorname{Var}\left(h\left(x^{*}\right)\right)+\operatorname{Bias}\left(h\left(x^{*}\right)\right)^{2}+E\left[\varepsilon^{2}\right] \\
= & \operatorname{Var}\left(h\left(x^{*}\right)\right)+\operatorname{Bias}\left(h\left(x^{*}\right)\right)^{2}+\sigma^{2}
\end{aligned}
$$

Expected prediction error $=$ Variance + Bias $^{2}+$ Noise 2

Bias, Variance, and Noise

- Variance: E[$\left(\mathrm{h}\left(\mathrm{x}^{*}\right)-\underline{\mathrm{h}\left(\mathrm{x}^{*}\right)}\right)^{2}$]

Describes how much $h\left(x^{*}\right)$ varies from one training set S to another

- Bias: $\left[h\left(x^{*}\right)-f\left(x^{*}\right)\right]$

Describes the average error of $h\left(x^{*}\right)$.

- Noise: $\mathrm{E}\left[\left(\mathrm{y}^{*}-\mathrm{f}\left(\mathrm{x}^{*}\right)\right)^{2}\right]=\mathrm{E}\left[\varepsilon^{2}\right]=\sigma^{2}$

Describes how much y^{*} varies from $f\left(x^{*}\right)$

50 fits (20 examples each)

Bias

Variance

Noise

50 fits (20 examples each)

Distribution of predictions at $\mathrm{x}=2.0$

50 fits (20 examples each)

Distribution of predictions at $\mathrm{x}=5.0$

Measuring Bias and Variance

\square In practice (unlike in theory), we have only ONE training set S.

- We can simulate multiple training sets by bootstrap replicates
$-S^{\prime}=\{x \mid x$ is drawn at random with replacement from S$\}$ and $\left|\mathrm{S}^{\prime}\right|=|S|$.

Procedure for Measuring Bias and Variance

- Construct B bootstrap replicates of S (e.g., $B=200): S_{1}, \ldots, S_{B}$
\square Apply learning algorithm to each replicate S_{b} to obtain hypothesis h_{b}
\square Let $T_{b}=S \backslash S_{b}$ be the data points that do not appear in S_{b} (out of bag points)
\square Compute predicted value $h_{b}(x)$ for each x in T_{b}

Estimating Bias and Variance (continued)

\square For each data point x, we will now have the observed corresponding value y and several predictions $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{k}}$.

- Compute the average prediction \underline{h}.
- Estimate bias as ($\underline{\mathrm{h}}-\mathrm{y}$)
- Estimate variance as $\Sigma_{\mathrm{k}}\left(\mathrm{y}_{\mathrm{k}}-\underline{\mathrm{h}}\right)^{2} /(\mathrm{K}-1)$
\square Assume noise is 0

Approximations in this Procedure

- Bootstrap replicates are not real data
- We ignore the noise
- If we have multiple data points with the same x value, then we can estimate the noise
- We can also estimate noise by pooling y values from nearby x values

Ensemble Learning Methods

\square Given training sample S
\square Generate multiple hypotheses, $\mathrm{h}_{1}, \mathrm{~h}_{2}, \ldots$, h_{L}.
\square Optionally: determining corresponding weights $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{L}}$
\square Classify new points according to

$$
\sum_{1} w_{1} h_{1}>\theta
$$

Bagging: Bootstrap Aggregating

- For b = 1, ..., B do
$-S_{b}=$ bootstrap replicate of S
- Apply learning algorithm to S_{b} to learn h_{b}
\square Classify new points by unweighted vote:
- $\left[\Sigma_{\mathrm{b}} \mathrm{h}_{\mathrm{b}}(\mathrm{x})\right] / \mathrm{B}>0$

Bagging

\square Bagging makes predictions according to $y=\Sigma_{b} h_{b}(x) / B$
\square Hence, bagging's predictions are $\underline{h}(x)$

Estimated Bias and Variance of Bagging

- If we estimate bias and variance using the same B bootstrap samples, we will have:
- Bias $=(\underline{\mathrm{h}}-\mathrm{y}) \quad$ [same as before]
- Variance $=\Sigma_{\mathrm{k}}(\underline{\mathrm{h}}-\underline{\mathrm{h}})^{2} /(\mathrm{K}-1)=0$
- Hence, according to this approximate way of estimating variance, bagging removes the variance while leaving bias unchanged.
\square In reality, bagging only reduces variance and tends to slightly increase bias

Bias/Variance Heuristics

- Models that fit the data poorly have high bias: "inflexible models" such as linear regression, regression stumps
- Models that can fit the data very well have low bias but high variance: "flexible" models such as nearest neighbor regression, regression trees
\square This suggests that bagging of a flexible model can reduce the variance while benefiting from the low bias

