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BiasBias--Variance Analysis in Variance Analysis in 
RegressionRegression

True function is y = f(x) + True function is y = f(x) + εε
–– where where εε is normally distributed with zero mean is normally distributed with zero mean 

and standard deviation and standard deviation σσ..
Given a set of training examples, {(xGiven a set of training examples, {(xii, y, yii)}, )}, 
we fit an hypothesis  h(x) = w we fit an hypothesis  h(x) = w ·· x + b  to x + b  to 
the data to minimize the squared errorthe data to minimize the squared error

ΣΣii [y[yii –– h(xh(xii)])]22



Example: 20 pointsExample: 20 points
y = x + 2 sin(1.5x) + N(0,0.2)y = x + 2 sin(1.5x) + N(0,0.2)



50 fits (20 examples each)50 fits (20 examples each)



BiasBias--Variance AnalysisVariance Analysis

Now, given a new data point x* (with Now, given a new data point x* (with 
observed value y* = f(x*) + observed value y* = f(x*) + εε), we would ), we would 
like to understand the expected prediction like to understand the expected prediction 
errorerror

E[ (y* E[ (y* –– h(x*))h(x*))2 2 ]]



Classical Statistical AnalysisClassical Statistical Analysis

Imagine that our particular training sample Imagine that our particular training sample 
S is drawn from some population of S is drawn from some population of 
possible training samples according to possible training samples according to 
P(S).P(S).
Compute ECompute EPP [ (y* [ (y* –– h(x*))h(x*))2 2 ]]
Decompose this into Decompose this into ““biasbias””, , ““variancevariance””, , 
and and ““noisenoise””



LemmaLemma
Let Z be a random variable with probability Let Z be a random variable with probability 
distribution P(Z)distribution P(Z)
Let Let ZZ = E= EPP[ Z ] be the average value of Z.[ Z ] be the average value of Z.
Lemma:  E[ (Z Lemma:  E[ (Z –– ZZ))22 ] = E[Z] = E[Z22] ] –– ZZ22

E[ (Z E[ (Z –– ZZ))22 ] = E[ Z] = E[ Z22 –– 2 Z 2 Z ZZ + + ZZ2 2 ]]
= E[Z= E[Z22] ] –– 2 E[Z] 2 E[Z] ZZ + + ZZ22

= E[Z= E[Z22] ] –– 2 2 ZZ22 + + ZZ22

= E[Z= E[Z22] ] –– ZZ22

Corollary: E[ZCorollary: E[Z22] = E[ (Z ] = E[ (Z –– ZZ))22 ] + ] + ZZ22



BiasBias--VarianceVariance--Noise Noise 
DecompositionDecomposition

E[ (h(x*) E[ (h(x*) –– y*)y*)22 ] = E[ h(x*)] = E[ h(x*)22 –– 2 h(x*) y* + y*2 h(x*) y* + y*22 ]]
= E[ h(x*)= E[ h(x*)2 2 ] ] –– 2 E[ h(x*) ] E[y*] + E[y*2 E[ h(x*) ] E[y*] + E[y*22]]
= E[ (h(x*) = E[ (h(x*) –– h(x*)h(x*)))22 ] + ] + h(x*h(x*))22 (lemma)(lemma)

–– 2 2 h(x*)h(x*) f(x*)f(x*)
+ E[ (y* + E[ (y* –– f(x*))f(x*))22 ] + f(x*)] + f(x*)22 (lemma)(lemma)

= E[ (h(x*) = E[ (h(x*) –– h(x*)h(x*)))22 ] +               [variance]] +               [variance]
((h(x*)h(x*) –– f(x*))f(x*))22 +                       [bias+                       [bias22]]
E[ (y* E[ (y* –– f(x*))f(x*))22 ]                       [noise]]                       [noise]



Derivation (continued)Derivation (continued)
E[ (h(x*) E[ (h(x*) –– y*)y*)22 ] = ] = 

= E[ (h(x*) = E[ (h(x*) –– h(x*)h(x*)))22 ] +] +
((h(x*)h(x*) –– f(x*))f(x*))22 ++
E[ (y* E[ (y* –– f(x*))f(x*))22 ]]

= Var(h(x*)) + Bias(h(x*))= Var(h(x*)) + Bias(h(x*))22 + E[ + E[ εε22 ]]
= Var(h(x*)) + Bias(h(x*))= Var(h(x*)) + Bias(h(x*))22 + + σσ22

Expected prediction error = Variance + BiasExpected prediction error = Variance + Bias22 + Noise+ Noise22



Bias, Variance, and NoiseBias, Variance, and Noise

Variance: Variance: E[ (h(x*) E[ (h(x*) –– h(x*)h(x*)))22 ]]

Describes how much h(x*) varies from one Describes how much h(x*) varies from one 
training set S to anothertraining set S to another
Bias: Bias: [[h(x*)h(x*) –– f(x*)]f(x*)]

Describes the Describes the averageaverage error of h(x*). error of h(x*). 
Noise: Noise: E[ (y* E[ (y* –– f(x*))f(x*))22 ] = E[] = E[εε22] = ] = σσ22

Describes how much y* varies from f(x*)Describes how much y* varies from f(x*)



50 fits (20 examples each)50 fits (20 examples each)



BiasBias



VarianceVariance



NoiseNoise



50 fits (20 examples each)50 fits (20 examples each)



Distribution of predictions at Distribution of predictions at 
x=2.0x=2.0



50 fits (20 examples each)50 fits (20 examples each)



Distribution of predictions at Distribution of predictions at 
x=5.0x=5.0



Measuring Bias and VarianceMeasuring Bias and Variance

In practice (unlike in theory), we have only In practice (unlike in theory), we have only 
ONE training set S.ONE training set S.
We can simulate multiple training sets by We can simulate multiple training sets by 
bootstrap replicatesbootstrap replicates
–– SS’’ = {x | x is drawn at random with       = {x | x is drawn at random with       

replacement from S} and |Sreplacement from S} and |S’’| = |S|.| = |S|.



Procedure for Measuring Bias Procedure for Measuring Bias 
and Varianceand Variance

Construct B bootstrap replicates of S (e.g., Construct B bootstrap replicates of S (e.g., 
B = 200): SB = 200): S11, , ……, S, SBB

Apply learning algorithm to each replicate Apply learning algorithm to each replicate 
SSbb to obtain hypothesis hto obtain hypothesis hbb

Let TLet Tbb = S = S \\ SSbb be the data points that do be the data points that do 
not appear in Snot appear in Sb   b   ((out of bagout of bag points)points)
Compute predicted value hCompute predicted value hbb(x) for each x (x) for each x 
in Tin Tbb



Estimating Bias and Variance Estimating Bias and Variance 
(continued)(continued)

For each data point x, we will now have For each data point x, we will now have 
the observed corresponding value y and the observed corresponding value y and 
several predictions yseveral predictions y11, , ……, y, yKK. . 
Compute the average prediction Compute the average prediction hh..
Estimate bias as (Estimate bias as (hh –– y)y)
Estimate variance as Estimate variance as ΣΣkk (y(ykk –– hh))22/(K /(K –– 1)1)
Assume noise is 0Assume noise is 0



Approximations in this Approximations in this 
ProcedureProcedure

Bootstrap replicates are not real dataBootstrap replicates are not real data
We ignore the noiseWe ignore the noise
–– If we have multiple data points with the same If we have multiple data points with the same 

x value, then we can estimate the noisex value, then we can estimate the noise
–– We can also estimate noise by pooling y We can also estimate noise by pooling y 

values from nearby x valuesvalues from nearby x values



Ensemble Learning MethodsEnsemble Learning Methods

Given training sample SGiven training sample S
Generate multiple hypotheses, hGenerate multiple hypotheses, h11, h, h22, , ……, , 
hhLL. . 
Optionally: determining corresponding Optionally: determining corresponding 
weights wweights w11, w, w22, , ……, , wwLL

Classify new points according toClassify new points according to
∑∑ll wwll hhll > > θθ



Bagging: Bootstrap AggregatingBagging: Bootstrap Aggregating

For b = 1, For b = 1, ……, B do, B do
–– SSbb = bootstrap replicate of S= bootstrap replicate of S
–– Apply learning algorithm to SApply learning algorithm to Sbb to learn hto learn hbb

Classify new points by Classify new points by unweightedunweighted vote:vote:
–– [[∑∑bb hhbb(x(x)]/B > 0)]/B > 0



BaggingBagging

Bagging makes predictions according toBagging makes predictions according to
y = y = ΣΣbb hhbb(x) / B(x) / B
Hence, baggingHence, bagging’’s predictions are s predictions are hh(x)(x)



Estimated Bias and Variance of Estimated Bias and Variance of 
BaggingBagging

If we estimate bias and variance using the same If we estimate bias and variance using the same 
B bootstrap samples, we will have:B bootstrap samples, we will have:
–– Bias = (Bias = (hh –– y)    [same as before]y)    [same as before]
–– Variance = Variance = ΣΣkk ((hh –– hh))22/(K /(K –– 1) = 01) = 0

Hence, according to this approximate way of Hence, according to this approximate way of 
estimating variance, bagging removes the estimating variance, bagging removes the 
variance while leaving bias unchanged.variance while leaving bias unchanged.
In reality, bagging only In reality, bagging only reducesreduces variance and variance and 
tends to slightly increase biastends to slightly increase bias



Bias/Variance HeuristicsBias/Variance Heuristics
Models that fit the data poorly have high bias:  Models that fit the data poorly have high bias:  
““inflexible modelsinflexible models”” such as linear regression, such as linear regression, 
regression stumpsregression stumps
Models that can fit the data very well have low Models that can fit the data very well have low 
bias but high variance:  bias but high variance:  ““flexibleflexible”” models such as models such as 
nearest neighbor regression, regression treesnearest neighbor regression, regression trees
This suggests that bagging of a flexible model This suggests that bagging of a flexible model 
can reduce the variance while benefiting from can reduce the variance while benefiting from 
the low biasthe low bias


