Bias-Variance Theory

1 Decompose Error Rate into components, some
of which can be measured on unlabeled data

1 Bias-Variance Decomposition for Regression

1 Bias-Variance Decomposition for Classification
1 Bias-Variance Analysis of Learning Algorithms
1 Effect of Bagging on Bias and Variance

1 Effect of Boosting on Bias and Variance

1 Summary and Conclusion




Bias-Variance Analysis In
Regression

1 True functionisy = f(x) + ¢

— where ¢ Is normally distributed with zero mean
and standard deviation o.

1 Given a set of training examples, {(x, V.)},
we fit an hypothesis h(x) =w -x+ b to
the data to minimize the squared error

% [y; — h(x)]?




Example: 20 points
y =X+ 2 sin(1.5x) + N(0,0.2)

fitted hypothesis
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Bias-Variance Analysis

1 Now, given a new data point x* (with
observed value y* = f(x*) + ¢), we would
like to understand the expected prediction
error

E[ (y* —h(x*))*]




Classical Statistical Analysis

1 Imagine that our particular training sample
S Is drawn from some population of
possible training samples according to
P(S).

1 Compute E; [ (y* — h(x*))?]

1 Decompose this into “bias”, “variance”,
and “noise”




Lemma

1 Let Z be a random variable with probability
distribution P(Z)

1 Let Z=Ey[ Z] be the average value of Z.
1 Lemma: E[(Z-2)?]=E[Z3] - Z?

E[(Z-ZP]1=E[22-22Z+2]
72|~ 2E[Z] 2+ Z2

72-222 + 2

72 - 72

1 Corollary: E[Z2] = E[ (Z - Z)?] + Z2




Bias-Variance-Noise

Decomposition
E[ (h(x*) —y*)? ] = E[ h(x")* — 2 h(x*) y* + y**]
= E[ h(x*)2] - 2 E[ h(x*) ] E[y*] + E[y*?]
= E[ (h(x*) = h(x*))?] + h(x*}>  (lemma)
— 2 h(x*) f(x*)

+E[(y* — f(x*))? ]+ f(x*)*  (lemma)

= E[ (h(X*) — h(x*))?] + [variance]
(h(x*) — f(x*))> + [bias?]
E[ (y* — f(x*))?] [noise]




Derivation (continued)

E[ (h(x*) —y*)? ] =
= E[ (h(x*) — h(x"))* ] +
(h(x*) — f(x*))= +
E[(y*— f(x*))]
= Var(h(x*)) + Bias(h(x*))? + E[ €2 ]
= Var(h(x*)) + Bias(h(x*))? + c2
Expected prediction error = Variance + Bias? + Noise?




Bias, Variance, and Noise

1 Variance: E[ (h(x*) — h(x*))?]

Describes how much h(x*) varies from one
training set S to another

1 Bias: [h(x*) — f(x*)]
Describes the average error of h(x™).

1 Noise: E[ (y* — f(x*))2 ] = E[¢2] = o2
Describes how much y* varies from f(x*)




50 fits (20 examples each)




true function
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50 fits (20 examples each)




Distribution of predictions at
x=2.0




50 fits (20 examples each)




Distribution of predictions at
X:

variance of predictions

true value




Measuring Bias and Variance

1In practice (unlike in theory), we have only
ONE training set S.

1 \We can simulate multiple training sets by
bootstrap replicates

— S’ ={x | x is drawn at random with
replacement from S} and |S’| = |S].




Procedure for Measuring Bias

and Variance

1 Construct B bootstrap replicates of S (e.g.,
B =200):S,, ..., S

1 Apply learning algorithm to each replicate
S, to obtain hypothesis h,

ilet T, =S\ S, be the data points that do
not appear in S, (out of bag points)

1 Compute predicted value h, (x) for each x
in T,




Estimating Bias and Variance

(continued)

1 For each data point x, we will now have
the observed corresponding value y and
several predictions y,, ..., Yk

1 Compute the average prediction h.

1 Estimate bias as (h—y)

1 Estimate variance as X, (y, — h)%/(K— 1)
1 Assume noise is 0




Approximations in this
Procedure

1 Bootstrap replicates are not real data

1 \We ignore the noise
— If we have multiple data points with the same

X value, then we can estimate the noise

— We can also estimate noise by pooling y
values from nearby x values




Ensemble Learning Methods

1 Given training sample S
1 Generate multiple hypotheses, h,, h,, ...,
h,.
1 Optionally: determining corresponding
weights w,, w,, ..., w|
1 Classify new points according to
2w, h >0




Bagging: Bootstrap Aggregating

iForb=1, ..., Bdo
— S, = bootstrap replicate of S
— Apply learning algorithm to S, to learn h,

1 Classify new points by unweighted vote:
— [T hy(x))/B >0




Bagging

1 Bagging makes predictions according to
y =2, h,(x)/B
1 Hence, bagging’s predictions are h(x)




Estimated Bias and Variance of
Bagging

1 If we estimate bias and variance using the same

B bootstrap samples, we will have:

— Bias = (h—y) [same as before]
— Variance = %, (h—h)?/(K-1)=0

1 Hence, according to this approximate way of
estimating variance, bagging removes the
variance while leaving bias unchanged.

1 In reality, bagging only reduces variance and
tends to slightly increase bias




Bias/VVariance Heuristics

1 Models that fit the data poorly have high bias:
“Inflexible models” such as linear regression,
regression stumps

1 Models that can fit the data very well have low
bias but high variance: “flexible” models such as
nearest neighbor regression, regression trees

1 This suggests that bagging of a flexible model
can reduce the variance while benefiting from
the low bias




