
Taxonomy of NoSQL

• Key-value

• Graph database

• Document-oriented

• Column family
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Typical NoSQL architecture
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Hashing 
function  maps 
each key to a 
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Sharding of data

• Distributes a single logical database system across a cluster of 
machines

• Uses range-based partitioning to distribute documents based 
on a specific shard key

• Automatically balances the data associated with each shard

• Can be turned on and off per collection (table) 
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Replica Sets

• Redundancy and Failover

• Zero downtime for 
upgrades and
maintenance 

• Master-slave replication
• Strong Consistency
• Delayed Consistency

• Geospatial features 9
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How does NoSQL vary from 

RDBMS?

• Looser schema definition

• Applications written to deal with specific documents/ data 
• Applications aware of the schema definition as opposed to the data 

• Designed to handle distributed, large databases

• Trade offs: 
• No strong support for ad hoc queries but designed for speed and 

growth of database
• Query language through the API

• Relaxation of the ACID properties 
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Benefits of NoSQL 

Elastic Scaling 
• RDBMS scale up – bigger 

load , bigger server
• NO SQL scale out –

distribute data across 
multiple hosts 
seamlessly

DBA Specialists
• RDMS require highly 

trained expert to 
monitor DB

• NoSQL require less 
management, automatic 
repair and simpler data 
models 

Big Data 
• Huge increase in data 

RDMS: capacity and 
constraints of data 
volumes at its limits

• NoSQL designed for big 
data
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Benefits of NoSQL

Flexible data models 
• Change management to 

schema for RDMS have 
to be carefully managed

• NoSQL databases more 
relaxed in structure of 
data

• Database schema 
changes do not have to 
be managed as one 
complicated change unit

• Application already 
written to address an 
amorphous schema

Economics
• RDMS rely on expensive 

proprietary servers to 
manage data 

• No SQL: clusters of 
cheap commodity 
servers to manage the 
data and transaction 
volumes

• Cost per gigabyte or 
transaction/second for 
NoSQL can be lower 
than the cost for a 
RDBMS 12



Drawbacks of NoSQL

• Support 
• RDBMS vendors 

provide a high level of 
support to clients
• Stellar reputation 

• NoSQL – are open 
source projects  with 
startups supporting 
them
• Reputation not yet 

established  

• Maturity 
• RDMS mature 

product: means stable 
and dependable 
• Also means old no 

longer cutting edge nor 
interesting

• NoSQL are still 
implementing their 
basic feature set 
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Drawbacks of NoSQL

• Administration
• RDMS administrator well 

defined role
• No SQL’s  goal:  no 

administrator necessary  
however NO SQL still 
requires effort to 
maintain

• Lack of Expertise 
• Whole workforce of 

trained and seasoned 
RDMS developers

• Still recruiting 
developers to the NoSQL 
camp  

• Analytics and Business 
Intelligence
• RDMS designed to 

address this niche 
• NoSQL designed to meet 

the needs of an Web 2.0 
application  - not 
designed for ad hoc 
query of the data  

• Tools are being 
developed to address 
this need 
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First example: 
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What is MongoDB?
• Developed by 10gen

• Founded in 2007 
• A document-oriented,  NoSQL database

• Hash-based, schema-less database
• No Data Definition Language
• In practice, this means you can store hashes with any keys and values 

that you choose
• Keys are a basic data type but in reality stored as strings 
• Document Identifiers (_id) will be created for each document,  field name 

reserved by system 

• Application tracks the schema and mapping 
• Uses BSON format

• Based on JSON – B stands for Binary 

• Written in C++
• Supports APIs (drivers)  in many computer languages

• JavaScript, Python, Ruby, Perl, Java, Java Scala, C#, C++, Haskell, 
Erlang
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Functionality of MongoDB

• Dynamic schema
• No DDL 

• Document-based database
• Secondary indexes 

• Query language via an API
• Atomic writes and fully-consistent reads

• If system configured that way 

• Master-slave replication with automated failover (replica sets) 

• Built-in horizontal scaling via automated range-based 
partitioning  of data (sharding)

• No  joins nor transactions 
18



Why use MongoDB?

• Simple queries

• Functionality provided applicable to most web applications 
• Easy and fast integration of data

• No ERD diagram 

• Not well suited for heavy and complex transactions systems

19



MongoDB: Hierarchical Objects

• A MongoDB instance 
may have zero or more 
‘databases’

• A database may have 
zero or more 
‘collections’.

• A collection may have 
zero or more 
‘documents’.

• A document may have 
one or more ‘fields’.

• MongoDB ‘Indexes’ 
function much like their 
RDBMS counterparts. 21
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RDB Concepts to NO SQL
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RDBMS MongoDB

Database Database

Table, View Collection

Row Document (BSON)

Column Field

Index Index

Join Embedded Document

Foreign Key Reference

Partition Shard

Collection is not 
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Schema-less 
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Embedded 
Document ?



MongoDB Processes and 

configuration  

• Mongod – Database instance

• Mongos - Sharding processes 
• Analogous to a database router. 
• Processes all requests
• Decides how many and which mongods should receive the query
• Mongos collates the results, and sends it back to the client. 

• Mongo – an  interactive shell ( a client)
• Fully functional JavaScript environment for use with a MongoDB

• You can have one mongos for the whole system no matter 
how many mongods you have

• OR you can have one local mongos for every client if you 
wanted to minimize network latency. 23



Choices made for Design of 

MongoDB

• Scale horizontally over commodity hardware
• Lots of relatively inexpensive servers 

• Keep the functionality that works well in RDBMSs 
– Ad hoc queries
– Fully featured indexes
– Secondary indexes

• What doesn’t distribute well in RDB?
– Long running multi-row transactions
– Joins
– Both artifacts of the relational data model (row x column)

24



BSON format

• Binary-encoded serialization of JSON-like documents

• Zero or more key/value pairs are stored as a single entity
• Each entry consists of a field name, a data type, and a value
• Large elements in a BSON document are prefixed with a 

length field to facilitate scanning
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• MongoDB does not need any pre-defined data schema
• Every document  in a collection could have different data

• Addresses NULL data fields 

Schema Free

name: “jeff”,
eyes: “blue”,
loc: [40.7, 73.4],
boss: “ben”}

{name: “brendan”,
aliases: [“el diablo”]}

name: “ben”,
hat: ”yes”}

{name: “matt”,
pizza: “DiGiorno”,
height: 72,
loc: [44.6, 71.3]}

{name: “will”,
eyes: “blue”,
birthplace: “NY”,
aliases: [“bill”, “la ciacco”],
loc: [32.7, 63.4],
boss: ”ben”}



• Data is in name / value pairs
• A name/value pair consists of a field name followed 

by a colon, followed by a value:
• Example: “name”: “R2-D2”

• Data is separated by commas
• Example: “name”: “R2-D2”, race : “Droid”

• Curly braces hold objects 
• Example: {“name”: “R2-D2”, race : “Droid”, affiliation: 

“rebels”}
• An array is stored in brackets []

• Example  [   {“name”: “R2-D2”, race : “Droid”, affiliation: 
“rebels”},

• {“name”: “Yoda”, affiliation: “rebels”} ]

JSON format



MongoDB Features

• Document-Oriented storage

• Full Index Support
• Replication & High 

Availability

• Auto-Sharding

• Querying

• Fast In-Place Updates
• Map/Reduce functionality

28
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Index Functionality
• B+ tree indexes
• An index is automatically created on the _id field (the primary 

key)
• Users can create other indexes to  improve query performance 

or to enforce Unique values for a particular field
• Supports single field index as well as Compound index 

• Like SQL order of the fields in a compound index matters 
• If you index a field that holds an array value, MongoDB creates 

separate index entries for every element of the array
• Sparse property of an index ensures that the index only 

contain entries for documents that have the indexed field. (so 
ignore records that do not have the field defined)

• If an index is both unique and sparse – then  the system will 
reject records that have a duplicate key value but allow 
records that do not have the indexed field defined
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CRUD operations 

• Create
• db.collection.insert( <document> ) 
• db.collection.save( <document> ) 
• db.collection.update( <query>, <update>, { upsert: true } ) 

• Read
• db.collection.find( <query>, <projection> )
• db.collection.findOne( <query>, <projection> ) 

• Update
• db.collection.update( <query>, <update>, <options> ) 

• Delete
• db.collection.remove( <query>, <justOne> ) 

Collection specifies the collection or the 
‘table’ to store the document 30



Create Operations 

Db.collection specifies the collection or the ‘table’ to store the 
document 

• db.collection_name.insert( <document> ) 
• Omit the _id field to have MongoDB generate a unique key

• Example db.parts.insert( {{type: “screwdriver”, quantity: 15 } )
• db.parts.insert({_id: 10, type: “hammer”, quantity: 1 })

• db.collection_name.update( <query>, <update>, { upsert: true } ) 
• Will update 1 or more records in a collection satisfying query

• db.collection_name.save( <document> ) 
• Updates an existing record or creates a new record 
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Read Operations 

• db.collection.find( <query>, <projection> ).cursor modified
• Provides functionality similar to the SELECT command 

• <query> where condition , <projection> fields in result set 

• Example: var PartsCursor =  db.parts.find({parts: 
“hammer”}).limit(5)

• Has cursors to handle a result set 
• Can modify the query to impose limits, skips, and sort orders.
• Can specify to return the ‘top’ number of records from the result 

set 

• db.collection.findOne( <query>, <projection> )

32



Query Operators

Name Description

$eq Matches value that are equal to a  specified value

$gt, $gte Matches values that are greater than (or equal to  a  specified value

$lt, $lte Matches values less than or ( equal to ) a specified value

$ne Matches values that are not equal to a specified value

$in Matches any of the values specified in an array

$nin Matches none of the values specified in an array

$or Joins query clauses with a logical OR returns all 

$and Join query clauses with a loginal AND

$not Inverts the effect of a query expression

$nor Join query clauses with a logical NOR

$exists Matches documents that have a specified field 33

https://docs.mongodb.org/manual/reference/operator/query/



Update Operations 

• db.collection_name.insert( <document> ) 
• Omit the _id field to have MongoDB generate a unique key

• Example db.parts.insert( {{type: “screwdriver”, quantity: 15 } )
• db.parts.insert({_id: 10, type: “hammer”, quantity: 1 })

• db.collection_name.save( <document> ) 
• Updates an existing record or creates a new record 

• db.collection_name.update( <query>, <update>, { upsert: true } ) 
• Will update 1 or more records in a collection satisfying query

• db.collection_name.findAndModify(<query>, <sort>, 
<update>,<new>, <fields>,<upsert>)

• Modify existing record(s) – retrieve old or new version of the record

34



Delete Operations 

• db.collection_name.remove(<query>, <justone>)
• Delete all records from a collection or matching a criterion

• <justone> - specifies to delete only 1 record matching the criterion

• Example: db.parts.remove(type: /^h/ } )  - remove all parts starting 
with h

• Db.parts.remove() – delete all documents in the parts collections

35



CRUD examples

36

> db.user.insert({
first: "John",
last : "Doe",
age: 39

})

> db.user.find ()
{ "_id" : ObjectId("51"),

"first" : "John",
"last" : "Doe",
"age" : 39 

}

> db.user.update(
{"_id" : ObjectId(“51")},
{

$set: {
age: 40,
salary: 7000}

}
)

> db.user.remove({
"first": /^J/ 

})



SQL vs. Mongo DB entities 

My SQL 

START TRANSACTION;

INSERT INTO contacts VALUES 

(NULL, ‘joeblow’);
INSERT INTO contact_emails
VALUES 

( NULL, ”joe@blow.com”,
LAST_INSERT_ID() ),

( NULL, 
“joseph@blow.com”, 

LAST_INSERT_ID() );

COMMIT;

Mongo DB

db.contacts.save( { 

userName: “joeblow”,
emailAddresses: [ 

“joe@blow.com”,
“joseph@blow.com” ] } 

);

37

Similar to IDS from the 70’s 
Bachman’s brainchild

DIFFERENCE: 
MongoDB separates physical structure 

from logical structure 

Designed to deal with large &distributed



Aggregated functionality 

Aggregation framework provides SQL-like aggregation 
functionality 

• Pipeline documents from a collection pass through an 
aggregation pipeline, which transforms these objects as they pass 
through

• Expressions produce output documents based on calculations 
performed on input documents

• Example db.parts.aggregate ( {$group  : {_id: type,   totalquantity
:  { $sum: quanity} }  } ) 
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Map reduce functionality 

• Performs complex aggregator functions given a collection of 
keys, value pairs 

• Must provide at least a map function, reduction function and a 
name of the result set 

• db.collection.mapReduce( <mapfunction>, <reducefunction>, 
{ out: <collection>, query: <document>, sort: <document>, 
limit: <number>, finalize: <function>, scope: <document>, 
jsMode: <boolean>, verbose: <boolean> } )

• More description of map reduce next lecture 
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Indexes: High performance 

read
• Typically used for frequently used queries

• Necessary when the total size of the documents exceeds the 
amount of available RAM.

• Defined on the collection level 
• Can be defined on 1 or more fields 

• Composite index  (SQL) Æ Compound index (MongoDB)

• B-tree index 

• Only 1 index can be used by the query optimizer when 
retrieving data 

• Index covers a query - match the query conditions and return 
the results using only the index; 
• Use index to provide the results. 40



Replication of data 

• Ensures redundancy, backup, and automatic failover
• Recovery manager in the RDMS

• Replication occurs through groups of servers known as replica 
sets
• Primary set – set of servers that client tasks direct updates to 
• Secondary set – set of servers used for duplication of data
• At the most can have 12 replica sets 

• Many different properties can be associated with a secondary set i.e. 
secondary-only, hidden delayed, arbiters, non-voting

• If the primary set fails the secondary sets ‘vote’ to elect the new 
primary set 

41



Consistency of data 

• All read operations issued to the primary of a replica set are 
consistent with the last write operation
• Reads to a primary have strict consistency

• Reads reflect the latest changes to the data

• Reads to a secondary have eventual consistency
• Updates propagate gradually 

• If clients permit reads from secondary sets – then client may read a 
previous state of the database 

• Failure occurs before the secondary nodes are updated 
• System identifies when a rollback needs to occur  

• Users are responsible for manually applying rollback changes

42



Provides Memory Mapped 

Files
• „A memory-mapped file is a segment of virtual memory which has 

been assigned a direct byte-for-byte correlation with some portion 
of a file or file-like resource.”1

• mmap()

43

1
: http://en.wikipedia.org/wiki/Memory-mapped_file



Other additional features

• Supports geospatial data of type
• Spherical

• Provides longitude and latitude 

• Flat 
• 2 dimensional points on a plane

• Geospatial indexes 

44


