Predicting Real-valued outputs: an introduction to Regression

Note to other teachers and users of these slides. Andrew would be delighted if you found this source material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. PowerPoint originals are available. If you make use of a significant portion of these slides in your own lecture, please include this message, or the following link to the source repository of Andrew's tutorials: http://www.cs.cmu.edu/~awm/tutorials Comments and corrections gratefully received.

Andrew W. Moore Professor School of Computer Science This is reordered material **Carnegie Mellon University** from the Neural Nets lecture and the "Favorite

Regression Algorithms"

lecture

www.cs.cmu.edu/~awm awm@cs.cmu.edu 412-268-7599

Copyright © 2001, 2003, Andrew W. Moore

Single-Parameter Linear Regression

DATASET

inputs	outputs
$x_1 = 1$	$y_1 = 1$
$x_2 = 3$	$y_2 = 2.2$
$x_3 = 2$	$y_3 = 2$
$x_4 = 1.5$	$y_4 = 1.9$
$x_5 = 4$	$y_5 = 3.1$

Linear regression assumes that the expected value of the output given an input, E[y/x], is linear. Simplest case: Out(x) = wx for some unknown w. Given the data, we can estimate w.

Copyright © 2001, 2003, Andrew W. Moore

1-parameter linear regression

Assume that the data is formed by

 $y_i = wx_i + noise_i$

where...

- the noise signals are independent
- the noise has a normal distribution with mean 0 and unknown variance σ^2

p(y|w,x) has a normal distribution with

- mean *wx*
- variance σ^2

Bayesian Linear Regression $p(y|w,x) = Normal (mean wx, var \sigma^2)$

We have a set of datapoints $(x_1, y_1) (x_2, y_2) \dots (x_n, y_n)$ which are EVIDENCE about *w*.

We want to infer *w* from the data.

 $p(W|X_{1r}, X_{2r}, X_{3r}...X_{nr}, Y_{1r}, Y_{2}...Y_{n})$

•You can use BAYES rule to work out a posterior distribution for *w* given the data.

•Or you could do Maximum Likelihood Estimation

Maximum likelihood estimation of w

Asks the question:

"For which value of *w* is this data most likely to have happened?"

<=>

For what *w* is

 $p(y_1, y_2...y_n | x_1, x_2, x_3,...x_n, w)$ maximized?

<=>

For what *w* is

$$\prod_{i=1}^{n} p(y_i | w, x_i) \text{ maximized}$$

For what *w* is

$$\prod_{i=1}^{n} p(y_i | w, x_i) \text{ maximized}$$

For what
$$w$$
 is

$$\prod_{j=1}^{n} \exp\left(-\frac{1}{2}\left(\frac{y_{j}-wx_{j}}{\sigma}\right)^{2}\right) \text{ maximized}?$$

For what *w* is

$$\sum_{i=1}^{n} -\frac{1}{2} \left(\frac{y_i - wx_i}{\sigma} \right)^2 \text{ maximized}$$

For what *w* is

 $\sum_{i=1}^{n} (y_i - wx_i)^2 \text{ minimized}?$

The maximum likelihood *w* is the one that minimizes sumof-squares of <u>residuals</u>

$$E = \sum_{i} (y_{i} - wx_{i})^{2}$$
$$= \sum_{i} y_{i}^{2} - (2\sum_{i} x_{i} y_{i})w + (\sum_{i} x_{i}^{2})w^{2}$$

We want to minimize a quadratic function of *w*.

Easy to show the sum of squares is minimized when

$$W = \frac{\sum x_i y_i}{\sum x_i^2}$$

The maximum likelihood model is Out(x) = wx

We can use it for prediction

Easy to show the sum of squares is minimized when

The maximum likelihood model is Out(x) = wx

We can use it for prediction

Multivariate Linear Regression

Multivariate Regression

What if the inputs are vectors?

Copyright © 2001, 2003, Andrew W. Moore

Multivariate Regression

Write matrix X and Y thus:

$$\mathbf{X} = \begin{bmatrix} \dots \mathbf{X}_{1} \dots \mathbf{X}_{2} \\ \dots \mathbf{X}_{2} \dots \mathbf{X}_{2} \\ \mathbf{M} \\ \dots \mathbf{X}_{R} \dots \mathbf{X}_{R} \end{bmatrix} = \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1m} \\ X_{21} & X_{22} & \dots & X_{2m} \\ \mathbf{M} & \mathbf{M} \\ X_{R1} & X_{R2} & \dots & X_{Rm} \end{bmatrix} \mathbf{Y} = \begin{bmatrix} y_{1} \\ y_{2} \\ \mathbf{M} \\ y_{R} \end{bmatrix}$$

(there are *R* datapoints. Each input has *m* components) The linear regression model assumes a vector *w* such that $Out(\mathbf{x}) = \mathbf{w}^{T}\mathbf{x} = w_{1}x[1] + w_{2}x[2] + \dots w_{m}x[D]$ The max. likelihood *w* is $\mathbf{w} = (X^{T}X)^{-1}(X^{T}Y)$

Multivariate Regression

Write matrix X and Y thus:

$$\mathbf{X} = \begin{bmatrix} \dots \mathbf{X}_{1} \dots \mathbf{X}_{2} \\ \dots \mathbf{X}_{2} \dots \mathbf{X}_{2} \\ \mathbf{M} \\ \dots \mathbf{X}_{R} \dots \mathbf{X}_{R} \end{bmatrix} = \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1m} \\ X_{21} & X_{22} & \dots & X_{2m} \\ \mathbf{M} & \mathbf{M} \\ X_{R1} & X_{R2} & \dots & X_{Rm} \end{bmatrix} \mathbf{Y} = \begin{bmatrix} y_{1} \\ y_{2} \\ \mathbf{M} \\ y_{R} \end{bmatrix}$$

(there are *R* datapoints. Each input **IMPORTANT EXERCISE: PROVE IT !!!!!** The linear regression model assumes a vector *w* such that $Out(x) = w^{T}x = w_{1}x[1] + w_{2}x[2] +w_{m}x[D]$ The max. likelihood *w* is $w = (X^{T}X)^{-1}(X^{T}Y)$

Multivariate Regression (con't)

The max. likelihood **w** is $\mathbf{w} = (X^T X)^{-1} (X^T Y)$ $X^T X$ is an $m \ge m$ matrix: i,j'th elt is $\sum_{k=1}^{R} x_{ki} x_{kj}$ $X^T Y$ is an *m*-element vector: i'th elt $\sum_{k=1}^{R} x_{ki} y_k$

Constant Term in Linear Regression

What about a constant term?

We may expect linear data that does not go through the origin.

Statisticians and Neural Net Folks all agree on a simple obvious hack.

Can you guess??

The constant term

• The trick is to create a fake input " X_0 " that always takes the value 1

Before:

$$Y = w_1 X_1 + w_2 X_2$$

...has to be a poor model

In this example, You should be able to see the MLE w_0 , w_1 and w_2 by inspection

X ₀	<i>X</i> ₁	<i>X</i> ₂	Y
1	2	4	16
1	3	4	17
1	5	5	20

After:

 $Y = W_0 X_0 + W_1 X_1 + W_2 X_2$ = W_0 + W_1 X_1 + W_2 X_2

...has a fine constant term

Non-linear Regression

Non-linear Regression

 Suppose you know that y is related to a function of x in such a way that the predicted values have a non-linear dependence on w, e.g:

Non-linear MLE estimation

$$\operatorname{argma}_{W} \operatorname{gp}(y_{1}, y_{2}, \dots, y_{R} \mid x_{1}, x_{2}, \dots, x_{R}, \sigma, w) = W$$

$$\operatorname{argmin}_{V} \sum_{i=1}^{R} \left(y_{i} - \sqrt{w + x_{i}} \right)^{2} = \operatorname{Assuming i.i.d. and then plugging in equation for Gaussian and simplifying.}$$

$$\left(w \operatorname{such tha}_{V_{i}=1}^{R} \frac{y_{i} - \sqrt{w + x_{i}}}{\sqrt{w + x_{i}}} = 0 \right) = \operatorname{Setting dLL/dw}_{equal to zero}$$

Non-linear MLE estimation

$$\operatorname{argma}_{W} \operatorname{sp}(y_{1}, y_{2}, \dots, y_{R} \mid x_{1}, x_{2}, \dots, x_{R}, \sigma, w) = W$$

$$\operatorname{argmin}_{V} \sum_{i=1}^{R} \left(y_{i} - \sqrt{w + x_{i}} \right)^{2} = \operatorname{Assuming i.i.d. and then plugging in equation for Gaussian and simplifying.}$$

$$\left(w \operatorname{such tha}_{i=1}^{R} \frac{y_{i} - \sqrt{w + x_{i}}}{\sqrt{w + x_{i}}} = 0 \right) = \operatorname{Setting dLL/dw}_{equal to zero}$$

We're down the algebraic toilet

So guess what we do?

Non-linear MLE estimation

argmaxbgp(
$$y_1, y_2, ..., y_R | x_1, x_2, ..., x_R, \sigma, w$$
) =

Polynomial Regression

Polynomial Regression

So far we've mainly been dealing with linear regression

Quadratic Regression

It's trivial to do linear fits of fixed nonlinear basis functions

Quadratic Regression

Qth-degree polynomial Regression

Regression Trees

Regression Trees

• "Decision trees for regression"

A one-split regression tree

Choosing the attribute to split on

Gender	Rich?	Num. Children	Num. Beany Babies	Age
Female	No	2	1	38
Male	No	0	0	24
Male	Yes	0	5+	72
•	•	•	•	:

- We can't use information gain.
- What should we use?

Choosing the attribute to split on

Gender	Rich?	Num. Children	Num. Beany Babies	Age
Female	No	2	1	38
Male	No	0	0	24
Male	Yes	0	5+	72
•	•	•	•	:

MSE(Y|X) = The expected squared error if we must predict a record's Y value given only knowledge of the record's X value

If we're told x=j, the smallest expected error comes from predicting the mean of the Y-values among those records in which x=j. Call this mean quantity $\mu_y^{x=j}$

Then...

$$MSE(Y | X) = \frac{1}{R} \sum_{j=1}^{N_{X}} \sum_{(k \text{ such that}_{k} = j)}^{N_{X}} \sum_{j=1}^{N_{X}} (y_{k} - i_{y})^{2}$$

Choosing the attribute to split on

	Gender	R	ich?	Num.	Num. Beany	Age	
	Female	N	Regression tree attribute selection: greedily choose the attribute that minimizes MSE(Y X)				on: greedily
	Male	Ν					Zes MSE(YX)
	Male	Y	Guess	Guess what we do about real-valued inputs?			
		:	Guess how we prevent overfitting				
MS	MSE(Y X) = The expected squared error in we must predict a record s r						
	value given only knowledge of the record's X value						
If۱	f we're told <i>x=j</i> , the smallest expected error comes from predicting the mean of the Y-values among those records in which <i>x=j</i> . Call this mean						

quantity $\mu_{V}^{x=j}$

Then...

$$MSE(Y | X) = \frac{1}{R} \sum_{j=1}^{N_{X}} \sum_{(k \text{ such that}_{k} = j)}^{N_{X}} \sum_{j=1}^{N_{X}} (y_{k} - i_{y})^{2}$$

Pruning Decision

Use a standard Chi-squared test of the nullhypothesis "these two populations have the same mean" and Bob's your uncle.

Leaves contain linear functions (trained using linear regression on all records matching that leaf) Split attribute chosen to minimize MSE of regressed children.

Pruning with a different Chisquared

Test your understanding

Assuming regular regression trees, can you sketch a graph of the fitted function $y^{est}(x)$ over this diagram?

Test your understanding

Assuming linear regression trees, can you sketch a graph of the fitted function $y^{est}(x)$ over this diagram?

