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Note to other teachers and users of 
these slides. Andrew would be delighted 
if you found this source material useful in 
giving your own lectures. Feel free to use 
these slides verbatim, or to modify them 
to fit your own needs. PowerPoint 
originals are available. If you make use 
of a significant portion of these slides in 
your own lecture, please include this 
message, or the following link to the 
source repository of Andrew’s tutorials: 
http://www.cs.cmu.edu/~awm/tutorials . 
Comments and corrections gratefully 
received. 
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ordered material 

from the Neural Nets 

lecture and the “Favorite 

Regression Algorithms” 

lecture

http://www.cs.cmu.edu/~awm/tutorials
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Single-
Parameter 

Linear 
Regression
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Linear Regression

Linear regression assumes that the expected value of 
the output given an input, E[y|x], is linear.
Simplest case: Out(x) = wx for some unknown w.
Given the data, we can estimate w.

inputs outputs
x1 = 1 y1 = 1

x2 = 3 y2 = 2.2

x3 = 2 y3 = 2

x4 = 1.5 y4 = 1.9

x5 = 4 y5 = 3.1

DATASET

¬ 1 ®


w
¯
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1-parameter linear regression
Assume that the data is formed by

yi = wxi + noisei

where…
• the noise signals are independent
• the noise has a normal distribution with mean 0 

and unknown variance s2

p(y|w,x) has a normal distribution with
• mean wx
• variance s2



5Copyright © 2001, 2003, Andrew W. Moore

Bayesian Linear Regression
p(y|w,x) = Normal (mean wx, var s2)

We have a set of datapoints (x1,y1) (x2,y2) … (xn,yn) 
which are EVIDENCE about w.

We want to infer w from the data.
p(w|x1, x2, x3,…xn, y1, y2…yn)

•You can use BAYES rule to work out a posterior 
distribution for w given the data.
•Or you could do Maximum Likelihood Estimation
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Maximum likelihood estimation of w

Asks the question:
“For which value of w is this data most likely to have 

happened?”
<=>

For what w is
p(y1, y2…yn |x1, x2, x3,…xn, w) maximized?

<=>
For what w is
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For what w is

For what w is

For what w is

For what w is
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Linear Regression

The maximum 
likelihood w is 
the one that 
minimizes sum-
of-squares of 
residuals

We want to minimize a quadratic function of w.

E(w) w
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Linear Regression
Easy to show the sum of 

squares is minimized 
when

The maximum likelihood 
model is

We can use it for 
prediction
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Linear Regression
Easy to show the sum of 

squares is minimized 
when

The maximum likelihood 
model is

We can use it for 
prediction

Note:   In Bayesian stats you’d have 

ended up with a prob dist of w

And predictions would have given a prob 

dist of expected output

Often useful to know your confidence.  

Max likelihood can give some kinds of 
confidence too.

p(w)

w
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Multivariate 
Linear 

Regression
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Multivariate Regression
What if the inputs are vectors?

Dataset has form
x1 y1
x2 y2
x3 y3
.:                                    :
.
xR yR

3 .

. 4                                              
6 .

. 5
. 8

. 10

2-d input 
example

x1

x2
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Multivariate Regression
Write matrix X and Y thus:

(there are R datapoints.  Each input has m components)
The linear regression model assumes a vector w such that

Out(x) = wTx = w1x[1] + w2x[2] + ….wmx[D]
The max. likelihood w is w = (XTX) -1(XTY)
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Multivariate Regression
Write matrix X and Y thus:

(there are R datapoints.  Each input has m components)
The linear regression model assumes a vector w such that

Out(x) = wTx = w1x[1] + w2x[2] + ….wmx[D]
The max. likelihood w is w = (XTX) -1(XTY)

IMPORTANT EXERCISE:  
PROVE IT !!!!!
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Multivariate Regression (con’t)

The max. likelihood w is w = (XTX)-1(XTY)

XTX is an m x m matrix:  i,j’th elt is

XTY is an m-element vector:  i’th elt
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Constant Term 
in Linear 

Regression
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What about a constant term?
We may expect 
linear data that does 
not go through the 
origin.

Statisticians and 
Neural Net Folks all 
agree on a simple 
obvious hack.

Can you guess??
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The constant term
• The trick is to create a fake input “X0” that 

always takes the value 1

X1 X2 Y
2 4 16
3 4 17
5 5 20

X0 X1 X2 Y
1 2 4 16
1 3 4 17
1 5 5 20

Before:
Y=w1X1+ w2X2 
…has to be a poor 
model

After:
Y= w0X0+w1X1+ w2X2 
= w0+w1X1+ w2X2 

…has a fine constant 
term

In this example, 
You should be able 
to see the MLE w0
, w1 and w2 by 
inspection 
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Non-linear 
Regression
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Non-linear Regression
• Suppose you know that y is related to a function of x in 

such a way that the predicted values have a non-linear 
dependence on w, e.g:

x=0 x=3x=2x=1
y=0

y=3

y=2

y=1

xi yi

½ ½
1 2.5
2 3
3 2
3 3

Assume What’s th
e MLE 

estimate of w?
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Non-linear MLE estimation

Assuming i.i.d. and 
then plugging in 
equation for Gaussian 
and simplifying.

Setting dLL/dw 
equal to zero
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Non-linear MLE estimation

Assuming i.i.d. and 
then plugging in 
equation for Gaussian 
and simplifying.

Setting dLL/dw 
equal to zero

We’re down the 
algebraic toilet

So guess what 

we do?
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Non-linear MLE estimation

Assuming i.i.d. and 
then plugging in 
equation for Gaussian 
and simplifying.

Setting dLL/dw 
equal to zero

We’re down the 
algebraic toilet

So guess what 

we do?

Common (but not only) approach:
Numerical Solutions:
• Line Search
• Simulated Annealing
• Gradient Descent
• Conjugate Gradient
• Levenberg Marquart
• Newton’s Method

Also, special purpose statistical-
optimization-specific tricks such as 
E.M. (See Gaussian Mixtures lecture 
for introduction)
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Polynomial 
Regression
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Polynomial Regression
So far we’ve mainly been dealing with linear regression
X1 X2 Y
3 2 7
1 1 3
: : :

3 2
1 1
: :

7
3
:

X= y=

x1=(3,2).. y1=7..
1 3 2
1 1 1
: :

7
3
:

Z= y=

z1=(1,3,2)..
zk=(1,xk1,xk2)

y1=7..

b=(ZTZ)-1(ZTy)

yest = b0+ b1 x1+ b2 x2
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Quadratic Regression
It’s trivial to do linear fits of fixed nonlinear basis functions
X1 X2 Y
3 2 7
1 1 3
: : :

3 2
1 1
: :

7
3
:

X= y=

x1=(3,2).. y1=7..
1 3 2 9 6 4
1 1 1 1 1 1
: :

7
3
:

Z=
y=

z=(1 ,  x1,   x2 ,   x12, x1x2,x22,)

b=(ZTZ)-1(ZTy)

yest = b0+ b1 x1+ b2 x2+
b3 x12 + b4 x1x2 + b5 x22
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Quadratic Regression
It’s trivial to do linear fits of fixed nonlinear basis functions
X1 X2 Y
3 2 7
1 1 3
: : :

3 2
1 1
: :

7
3
:

X= y=

x1=(3,2).. y1=7..
1 3 2 9 6 4
1 1 1 1 1 1
: :

7
3
:

Z=
y=

z=(1 ,  x1,   x2 ,   x12, x1x2,x22,)

b=(ZTZ)-1(ZTy)

yest = b0+ b1 x1+ b2 x2+
b3 x12 + b4 x1x2 + b5 x22

Each component of a z vector is called a term.
Each column of the Z matrix is called a term column
How many terms in a quadratic regression with m
inputs?
•1 constant term
•m linear terms
•(m+1)-choose-2 = m(m+1)/2 quadratic terms
(m+2)-choose-2 terms in total = O(m2)

Note that solving b=(ZTZ)-1(ZTy) is thus O(m6)
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Qth-degree polynomial Regression
X1 X2 Y
3 2 7
1 1 3
: : :

3 2
1 1
: :

7
3
:

X= y=

x1=(3,2).. y1=7..
1 3 2 9 6 …
1 1 1 1 1 …
: …

7
3
:

Z=
y=

z=(all products of powers of inputs in 
which sum of powers is q or less,)

b=(ZTZ)-1(ZTy)

yest = b0+ 
b1 x1+…
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Regression Trees
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Regression Trees
• “Decision trees for regression”
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A regression tree leaf

Predict age = 47

Mean age of records 
matching this leaf node
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A one-split regression tree

Predict age = 36Predict age = 39

Gender?

Female Male
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Choosing the attribute to split on

• We can’t use 
information gain.

• What should we use?

Gender Rich? Num. 
Children

Num. Beany 
Babies

Age

Female No 2 1 38
Male No 0 0 24
Male Yes 0 5+ 72
: : : : :
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Choosing the attribute to split on

MSE(Y|X) = The expected squared error if we must predict a record’s Y 
value given only knowledge of the record’s X value

If we’re told x=j, the smallest expected error comes from predicting the 
mean of the Y-values among those records in which x=j. Call this mean 
quantity µyx=j

Then…

Gender Rich? Num. 
Children

Num. Beany 
Babies

Age

Female No 2 1 38
Male No 0 0 24
Male Yes 0 5+ 72
: : : : :
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Choosing the attribute to split on

MSE(Y|X) = The expected squared error if we must predict a record’s Y 
value given only knowledge of the record’s X value

If we’re told x=j, the smallest expected error comes from predicting the 
mean of the Y-values among those records in which x=j. Call this mean 
quantity µyx=j

Then…

Gender Rich? Num. 
Children

Num. Beany 
Babies

Age

Female No 2 1 38
Male No 0 0 24
Male Yes 0 5+ 72
: : : : :

Regression tree attribute selection: greedily 
choose the attribute that minimizes MSE(Y|X) 
Guess what we do about real-valued inputs?
Guess how we prevent overfitting
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Pruning Decision

Predict age = 36Predict age = 39

Gender?
Female Male

…property-owner = Yes

# property-owning females = 56712
Mean age among POFs = 39
Age std dev among POFs = 12

# property-owning males = 55800
Mean age among POMs = 36
Age std dev among POMs = 11.5

Use a standard Chi-squared test of the null-
hypothesis “these two populations have the same 
mean” and Bob’s your uncle.

Do I deserve 
to live?
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Linear Regression Trees

Predict age = 
26 + 6 * NumChildren - 2 
* YearsEducation

Gender?
Female Male

…property-owner = Yes

Leaves contain linear 
functions (trained using 
linear regression on all 
records matching that leaf)

Predict age = 
24 + 7 * NumChildren -
2.5 * YearsEducation

Also known as 
“Model Trees”

Split attribute chosen to minimize 
MSE of regressed children.
Pruning with a different Chi-
squared
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Linear Regression Trees

Predict age = 
26 + 6 * NumChildren - 2 
* YearsEducation

Gender?
Female Male

…property-owner = Yes

Leaves contain linear 
functions (trained using 
linear regression on all 
records matching that leaf)

Predict age = 
24 + 7 * NumChildren -
2.5 * YearsEducation

Also known as 
“Model Trees”

Split attribute chosen to minimize 
MSE of regressed children.
Pruning with a different Chi-
squared

Detail
: Yo

u typically
 ignore an

y 

cate
gorical

 attr
ibute th

at h
as b

een test
ed 

on higher u
p in the tre

e during the 

regress
ion. But use a

ll unteste
d 

attri
butes, 

and use re
al-va

lued attr
ibutes 

even
 if th

ey’v
e been test

ed above
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Test your understanding

x

y

Assuming regular regression trees, can you sketch a graph 
of the fitted function yest(x) over this diagram?
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Test your understanding

x

y

Assuming linear regression trees, can you sketch a graph 
of the fitted function yest(x) over this diagram?


