Predicting Real-valued outputs: an introduction to Regression

Note to other teachers and users of these slides. Andrew would be delighted if you found this source material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. PowerPoint originals are available. If you make use of a significant portion of these slides in your own lecture, please include this message, or the following link to the source repository of Andrew's tutorials: http://www.cs.cmu.edu/~awm/tutorials . Comments and corrections gratefully received.

Andrew W. Moore Professor

School of Computer Science Carnegie Mellon University
www.cs.cmu.edu/~awm awm@cs.cmu.edu 412-268-7599


```
This is reordered material
from th
``` lecture the "Favorite vorit ression Algorithms"

\section*{SingleParameter Linear Regression}

\section*{Linear Regression}

\section*{DATASET}

\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ inputs } & \multicolumn{1}{|c|}{ outputs } \\
\hline\(x_{1}=1\) & \(y_{1}=1\) \\
\hline\(x_{2}=3\) & \(y_{2}=2.2\) \\
\hline\(x_{3}=2\) & \(y_{3}=2\) \\
\hline\(x_{4}=1.5\) & \(y_{4}=1.9\) \\
\hline\(x_{5}=4\) & \(y_{5}=3.1\) \\
\hline
\end{tabular}

Linear regression assumes that the expected value of the output given an input, \(E[y / x]\), is linear.
Simplest case: Out \((x)=w x\) for some unknown \(w\). Given the data, we can estimate \(w\).

\section*{1-parameter linear regression}

Assume that the data is formed by
\[
y_{i}=w x_{i}+\text { noise }_{i}
\]
where...
- the noise signals are independent
- the noise has a normal distribution with mean 0 and unknown variance \(\sigma^{2}\)
\(\mathrm{p}(y \mid w, x)\) has a normal distribution with
- mean \(w x\)
- variance \(\sigma^{2}\)

\section*{Bayesian Linear Regression \(\mathrm{p}(y \mid w, x)=\operatorname{Normal}\left(\right.\) mean \(w x\), var \(\left.\sigma^{2}\right)\)}

We have a set of datapoints \(\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \ldots\left(x_{n}, y_{n}\right)\) which are EVIDENCE about \(w\).

We want to infer \(w\) from the data.
\[
\mathrm{p}\left(w \mid x_{1}, x_{2}, x_{3}, \ldots x_{n}, y_{1}, y_{2} \ldots y_{n}\right)
\]
- You can use BAYES rule to work out a posterior distribution for \(w\) given the data.
-Or you could do Maximum Likelihood Estimation

\section*{Maximum likelihood estimation of \(w\)}

Asks the question:
"For which value of \(w\) is this data most likely to have happened?"
\[
<=>
\]

For what \(w\) is
\(\mathrm{p}\left(y_{1}, y_{2} \ldots y_{n} \mid x_{1}, x_{2}, x_{3}, \ldots x_{n}, w\right)\) maximized?
\[
<=>
\]

For what \(w\) is
\[
\prod_{i=1}^{n} p\left(y_{i} \mid w, x_{i}\right) \text { maximized }
\]

For what \(w\) is
\[
\prod_{i=1}^{n} p\left(y_{i} \mid w, x_{i}\right) \text { maximized }
\]

For what \(w\) is
\[
\prod_{i=1}^{n} \exp \left(-\frac{1}{2}\left(\frac{y_{i}-w_{i}}{\sigma}\right)^{2}\right) \text { maximized! }
\]

For what \(w\) is
\[
\sum_{i=1}^{n}-\frac{1}{2}\left(\frac{y_{i}-w x_{i}}{\sigma}\right)^{2} \text { maximized }!
\]

For what \(w\) is
\[
\sum_{i=1}^{n}\left(y_{i}-w x_{i}\right)^{2} \text { minimized }
\]

\section*{Linear Regression}

The maximum likelihood \(w\) is the one that minimizes sum-of-squares of residuals
\[
\begin{aligned}
& \mathrm{E}=\sum_{i}\left(y_{i}-w x_{i}\right)^{2} \\
& =\sum_{i} y_{i}^{2}-\left(2 \sum x_{i} y_{i}\right) w+\left(\sum x_{i}^{2}\right) w^{2}
\end{aligned}
\]

We want to minimize a quadratic function of \(w\).

\section*{Linear Regression}

Easy to show the sum of squares is minimized when
\[
w=\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}
\]

The maximum likelihood model is \(\operatorname{Out}(x)=W x\)

\author{
We can use it for prediction
}

\section*{Linear Regression}

Easy to show the sum of squares is minimized
when

The maximum likelihood model is \(\operatorname{Out}(x)=w x\)

\section*{We can use it for prediction}

\title{
Multivariate
} Linear Regression

\section*{Multivariate Regression}

\section*{What if the inputs are vectors?}

\section*{Multivariate Regression}

Write matrix \(X\) and \(Y\) thus:
\[
\mathbf{x}=\left[\begin{array}{c}
\ldots \mathrm{x}_{1} \ldots . \\
\ldots \mathrm{x}_{2} \ldots . \\
\mathrm{M} \\
\ldots \mathrm{x}_{R} \ldots .
\end{array}\right]=\left[\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 m} \\
x_{21} & x_{22} & \ldots & x_{2 m} \\
& & \mathrm{M} & \\
x_{R 1} & x_{R 2} & \ldots & x_{R m}
\end{array}\right] \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\mathrm{M} \\
y_{R}
\end{array}\right]
\]
(there are \(R\) datapoints. Each input has \(m\) components)
The linear regression model assumes a vector \(\boldsymbol{w}\) such that
\[
\operatorname{Out}(\boldsymbol{x})=\boldsymbol{w}^{\top} \boldsymbol{x}=w_{1} x[1]+w_{2} x[2]+\ldots . w_{m} x[\mathrm{D}]
\]

The max. likelihood \(\boldsymbol{w}\) is \(\boldsymbol{w}=\left(X^{\top} X\right)^{-1}\left(X^{\top} Y\right)\)

\section*{Multivariate Regression}

Write matrix \(X\) and \(Y\) thus:
\[
\mathbf{x}=\left[\begin{array}{c}
\ldots \mathbf{x}_{1} \ldots . \\
\ldots \mathrm{x}_{2} \ldots . \\
\mathrm{M} \\
\ldots \mathrm{x}_{R} \ldots .
\end{array}\right]=\left[\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 m} \\
x_{21} & x_{22} & \ldots & x_{2 m} \\
& & \mathrm{M} & \\
x_{R 1} & x_{R 2} & \ldots & x_{R m}
\end{array}\right] \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\mathrm{M} \\
y_{R}
\end{array}\right]
\]
(there are \(R\) datapoints. Each input

\section*{IMPORTANT EXERCISE: PROVE IT !!!!!}

The linear regression model assumes a vector \(\boldsymbol{w}\) such that
\[
\operatorname{Out}(\boldsymbol{x})=\boldsymbol{w}^{\top} \boldsymbol{x}=w_{1} x[1]+w_{2} x[2]+\ldots . w_{\mathrm{m}} x[\mathrm{D}]
\]

The max. likelihood \(\boldsymbol{w}\) is \(\boldsymbol{w}=\left(X^{\top} X\right)^{-1}\left(X^{\top} Y\right)\)

\section*{Multivariate Regression (con't)}

The max. likelihood \(\boldsymbol{w}\) is \(\boldsymbol{w}=\left(X^{\top} X\right)^{-1}\left(X^{\top} Y\right)\)
\(X^{\top} X\) is an \(m \times m\) matrix: \(\mathrm{i}, \mathrm{j}^{\prime}\) th elt is \(\sum_{k=1}^{R} X_{k i} X_{k j}\)
\(X^{\top} \mathrm{Y}\) is an \(m\)-element vector: \(i^{\text {th }}\) elt \(\sum_{k=1}^{R} x_{k i} y_{k}\)

\section*{Constant Term in Linear Regression}

\section*{What about a constant term?}

We may expect linear data that does not go through the origin.

Statisticians and Neural Net Folks all agree on a simple obvious hack.
height

\section*{Can you guess??}

\section*{The constant term}
- The trick is to create a fake input " \(X_{0}\) " that always takes the value 1
\begin{tabular}{|l|l|l|}
\hline\(X_{1}\) & \(X_{2}\) & \(Y\) \\
\hline 2 & 4 & 16 \\
\hline 3 & 4 & 17 \\
\hline 5 & 5 & 20 \\
\hline
\end{tabular}

Before:
\(Y=w_{1} X_{1}+w_{2} X_{2}\)
...has to be a poor model
\begin{tabular}{|l|l|l|l|}
\hline\(X_{0}\) & \(X_{1}\) & \(X_{2}\) & \(Y\) \\
\hline 1 & 2 & 4 & 16 \\
\hline 1 & 3 & 4 & 17 \\
\hline 1 & 5 & 5 & 20 \\
\hline
\end{tabular}

After:
\(Y=w_{0} X_{0}+w_{1} X_{1}+w_{2} X_{2}\)
In this example,
You should be able
to see the MLE \(w_{0}\)
, \(w_{1}\) and \(w_{2}\) by inspection

\section*{Non-linear Regression}

\section*{Non-linear Regression}
- Suppose you know that \(y\) is related to a function of \(x\) in such a way that the predicted values have a non-linear dependence on w, e.g:
\begin{tabular}{|l|l|}
\hline\(x_{i}\) & \(y_{i}\) \\
\hline \(1 / 2\) & \(1 / 2\) \\
\hline 1 & 2.5 \\
\hline 2 & 3 \\
\hline 3 & 2 \\
\hline 3 & 3 \\
\hline
\end{tabular}

\section*{Assume \(\quad Y_{i} \sim N\left(\sqrt{W+X_{i}}, \sigma^{2}\right)\)}

\section*{Non-linear MLE estimation}
\(\operatorname{argmax} p p\left(y_{1}, y_{2}, \ldots, y_{R} \mid x_{1}, x_{2}, \ldots, x_{R}, \sigma, w\right)=\)

\section*{Non-linear MLE estimation}

\section*{\(\operatorname{argmax} p g\left(y_{1}, y_{2}, \ldots, y_{R} \mid x_{1}, x_{2}, \ldots, x_{R}, \sigma, w\right)=\)}
\[
\begin{aligned}
& w \\
& \quad \underset{w}{\operatorname{argmin}} \sum_{i=1}^{R}\left(y_{i}-\sqrt{w+x_{i}}\right)^{2}= \\
& \left(w s u c h ~ \operatorname{tha} \sum_{i=1}^{R} \frac{y_{i}-\sqrt{w+x_{i}}}{\sqrt{w+x_{i}}}=0\right)=
\end{aligned}
\]
\[
\underset{w}{\operatorname{argmin}} \sum_{i=1}^{R}\left(y_{i}-\sqrt{w+x_{i}}\right)^{*}=\begin{aligned}
& \begin{array}{l}
\text { Assuming i.i.d. and } \\
\text { then plugi, ind } \\
\text { eatuation forg Gaussian } \\
\text { and simplifying. }
\end{array} \\
& \hline
\end{aligned}
\]

Setting dLL/dw equal to zero

We're down the algebraic toilet

\section*{Non-linear MLE estimation}

\section*{\(\operatorname{argmax} \operatorname{pg} p\left(y_{1}, y_{2}, \ldots, y_{R} \mid x_{1}, x_{2}, \ldots, x_{R}, \sigma, w\right)=\)}

W
Common (but not only) approach:
Numerical Solutions:
- Line Search
- Simulated Annealing
- Gradient Descent
- Conjugate Gradient
- Levenberg Marquart
- Newton's Method

Also, special purpose statistical-optimization-specific tricks such as E.M. (See Gaussian Mixtures lecture for introduction)

\title{
Polynomial Regression
}

\section*{Polynomial Regression}

So far we've mainly been dealing with linear regression

\section*{Quadratic Regression}

It's trivial to do linear fits of fixed nonlinear basis functions

\section*{Quadratic Regression}

It's tri Each component of a z vector is called a term.
\begin{tabular}{c|l|l}
\(X_{1}\) & \(X\) & Each column of the \(Z\) matrix is called a term colum \\
\hline 3 & 2 & How many terms in a quadratic regression with \(m\)
\end{tabular}
\begin{tabular}{l|l|l}
\hline 1 & 1 & inputs? \\
\hline\(\cdot\) &. & \(\bullet 1\) constant term
\end{tabular}
\(\mathbf{Z}=\)\begin{tabular}{|l|l}
1 & \(\bullet m\) linear terms \\
\hline 1 & \(\bullet(m+1)\)-choose \(-2=m(m+1) / 2\) quadratic terms
\end{tabular} \((\mathrm{m}+2)\)-choose-2 terms in total \(=O\left(m^{2}\right)\)
\(z=(1\)
Note that solving \(\beta=\left(\boldsymbol{Z}^{\top} \boldsymbol{Z}\right)^{-1}\left(\boldsymbol{Z}^{\top} \boldsymbol{y}\right)\) is thus \(O\left(m^{6}\right)\)

\section*{QQth-degree polynomial Regression}

\section*{Regression Trees}

\section*{Regression Trees}
- "Decision trees for regression"

\section*{A regression tree leaf}

\section*{A one-split regression tree}

\section*{Choosing the attribute to split on}
\begin{tabular}{|l|l|l|l|l|}
\hline Gender & Rich? & \begin{tabular}{l}
Num. \\
Children
\end{tabular} & \begin{tabular}{l}
Num. Beany \\
Babies
\end{tabular} & Age \\
\hline Female & No & 2 & 1 & 38 \\
\hline Male & No & 0 & 0 & 24 \\
\hline Male & Yes & 0 & \(5+\) & 72 \\
\hline\(:\) & \(:\) & \(:\) & \(:\) & \(:\) \\
\hline
\end{tabular}
- We can't use information gain.
- What should we use?

\section*{Choosing the attribute to split on}
\begin{tabular}{|l|l|l|l|l|}
\hline Gender & Rich? & \begin{tabular}{l}
Num. \\
Children
\end{tabular} & \begin{tabular}{l}
Num. Beany \\
Babies
\end{tabular} & Age \\
\hline Female & No & 2 & 1 & 38 \\
\hline Male & No & 0 & 0 & 24 \\
\hline Male & Yes & 0 & \(5+\) & 72 \\
\hline\(:\) & \(:\) & \(:\) & \(:\) & \(:\) \\
\hline
\end{tabular}
\(\operatorname{MSE}(\mathrm{Y} \mid \mathrm{X})=\) The expected squared error if we must predict a record's Y value given only knowledge of the record's \(X\) value
If we're told \(x=j\), the smallest expected error comes from predicting the mean of the \(Y\)-values among those records in which \(x=j\). Call this mean quantity \(\mu_{y}{ }^{x=j}\)
Then...
\[
\left.\operatorname{MSE}(Y \mid X)=\frac{1}{R} \sum_{j=1}^{N_{X}} \sum_{(k \operatorname{such}}\left(y_{k}-i_{\text {that }}^{x}=j\right)=j{ }_{y}^{x=j}\right)^{2}
\]

\section*{Choosing the attribute to split on}
\begin{tabular}{|l|l|l|l|l|}
\hline Gender & \begin{tabular}{l}
Rich? \\
?
\end{tabular} & \begin{tabular}{l}
Num. \\
Chidran
\end{tabular} & \begin{tabular}{l}
Num. Beany \\
Q.hino
\end{tabular} & Age
\end{tabular} value given only knowledge of the record's \(X\) value
If we're told \(x=j\), the smallest expected error comes from predicting the mean of the \(Y\)-values among those records in which \(x=j\). Call this mean quantity \(\mu_{y}{ }^{x=j}\)
Then...
\[
\left.\operatorname{MSE}(Y \mid X)=\frac{1}{R} \sum_{j=1}^{N_{X}} \sum_{(k \operatorname{such}}\left(y_{k}-i_{\text {that }}^{x}=j\right)=j{ }_{y}^{x=j}\right)^{2}
\]

\section*{Pruning Decision}

\# property-owning females \(=56712\)
Mean age among POFs = 39
Age std dev among POFs = 12

\section*{Do I deserve to live?}

Use a standard Chi-squared test of the nullhypothesis "these two populations have the same mean" and Bob's your uncle.

\section*{Linear Regression Trees}
...property-owner = Yes

Gender?

Also known as "Model Trees"

Predict age \(=\)
\(26+6\) * NumChildren - 2 * YearsEducation

Predict age =
\(24+7\) * NumChildren -
2.5 * YearsEducation

Leaves contain linear functions (trained using linear regression on all records matching that leaf)

Split attribute chosen to minimize MSE of regressed children.

Pruning with a different Chisquared

\section*{Linear Regression Trees} ...property-owner = Yes Gender?

Predict age \(=\) \(26+6\) * N tail: you ty atribut the functions (traine regrejbutes, and linear regression atruen if they regressed children. records matching \(t{ }^{\text {ever Pruning with a different Chi- }}\) squared

\section*{Test your understanding}

Assuming regular regression trees, can you sketch a graph of the fitted function \(y^{\text {stt }} x\)) over this diagram?

\section*{Test your understanding}

Assuming linear regression trees, can you sketch a graph of the fitted function \(y^{\text {stt }} x\)) over this diagram?
```

