Secure Group Communication over Wireless Ad Hoc Networks by Yueh-Min Huang et al. Presented by Navid Golpayegani

Overview

Definitions
 Background
 Implementation
 Conclusion
 References

Definitions

Local Area Network (LAN)
 Group of hosts on the same physical network
 Virtual LAN (VLAN)

Group of hosts communicating as if located on the same LAN

Definitions

Mobile ad hoc network (MANET)
 System made up of wireless nodes
 Self configuring
 Group Communication
 Many-to-Many transmission

Definitions

Diffie-Hellman Key exchange
 Establish shared secret key
 No prior knowledge of each other necessary

Key established over insecure channel

Group Diffie-Hellman

Overview

Definitions
 Background
 Implementation
 Conclusion
 References

SVLAN [®] IEEE 802.10 Frames belonging to a VLAN contain VLAND ID (VID) Filtering Database (FDB) stores information of all groups even unrelated

Group Diffie-Hellman
 well known parameters
 prime number q
 integer a < q</pre>

Node M₁ sends a^{X₁} mod q to M₂
 Node M₂ sends a^{X₁X₂} mod q to M₃
 Node M_{n-1} broadcasts final value to all Nodes

Send $a^{\prod{X_j|j \in [1..n-1] \land j \neq i}} \mod{q \text{ to } X_n}$

M_n receives each value and raises it to X_n

Show value returned to each node Show value raises the value to X_i

They now all share the same secret value

Overview

Definitions
 Background
 Implementation
 Conclusion
 References

Overall Design

Centralized agent keeps track of groups

Communication with centralized agent is assumed to be secure

Communication done in several stages

Overall Design

Packet includes a Virtual Subnet Identifier (VSID)

Nodes maintain a forwarding cache table to store VSID for relaying

Table is populated when a cache request is received (CREQ)

Initiation Stage

 Arriving node contacts centralized agent requesting to create/join group
 Agent assigns hash function h(), security parameters q and a

Start of Group communication
 Node broadcasts VS-REQUEST packet
 Nonce
 ID

h(Nonce_s||ID_s)

Compute h'(Nonce_s||ID_s) to determine if receiver is in same group

- same groups have same h()
- Solution Soluti Solution Solution Solution Solution Solution Solution So
 - Noncei
 - S IDi
 - h(Noncei||IDi)

If receiver has neighbors VS-REQUEST
is relayed

Group	Existing Neighbors	Nonexisting Neighbor
Same	Reply and Relay	Reply
Different	Relay	Ignore

- Initiator collects all IDs
- Creates a VSID
- Propagates subnet information to members via multicast
 - Sonce, ID, VSID, Member List, h(Nonce||ID)
- Members exchange routing information
 Find shortest path and send CREQ

Maintenance Stage

Periodically advertise CREQ to neighbors

Node ID, VSID

If no CREQ received in a while or no packets forward for VSID

remove from forwarding table

Transmission

Set VSID in packet and send accept packet first time received belong to VSID relay packet VSID in forwarding table drop packet

All nodes factor out their X_i
Send value to node n
Node n adds its own X_n and returns value to i

 $\ensuremath{\overset{\circ}{}}$ Node i adds X_i back $\ensuremath{\overset{\circ}{}}$ All nodes now have same secret value

$$M_{1} \xrightarrow{R_{1} = h(ID_{1}) \oplus a^{X_{1}}} \longrightarrow M_{2} \xrightarrow{R_{2} = h(ID_{2}) \oplus a^{X_{1}X_{2}}} \longrightarrow M_{3} \longrightarrow \dots \longrightarrow M_{n-1}}$$

$$M_{n-1} \xrightarrow{R_{n-1} = h(ID_{n-1}) \oplus a^{X_{1}X_{2}\dots X_{n-1}}} \longrightarrow M_{i}$$

$$M_{i} \xrightarrow{R_{i} = h(ID_{i}) \oplus a^{\prod_{i=1}^{n-1} X_{i} \text{ where } j \neq i}} \longrightarrow M_{n}$$

$$M_{n} \xrightarrow{R_{n} = h(ID_{n}) \oplus a^{\prod_{i=1}^{n} X_{i} \text{ where } j \neq i}} \longrightarrow M_{n}$$

New members send VS-JOIN Nonce, ID, h(Nonce||ID) Existing member sends VS-REFRESH Nonce, ID, VSID, member list, h(Nonce||ID) New Key agreement

Leaving members send VS-QUIT
 Nonce, ID, h(NoncellID)
 Multicast
 Members drop ID from member list
 Restart Key Agreement

Overview

Definitions
 Background
 Implementation
 Conclusion
 References

Conclusion

Exponent computation
 5n-6
 Message exchange
 3(n-4) unicasts
 1 multicast

Conclusion

No experimental analysis Inefficient with large number of nodes and frequent leave/join Some claims without explanation Shortest path from routing info XOR similar to one time pad Only secure if used once

References

"Constructing Secure Group Communication over Wireless Ad Hoc Networks based on a Virtual Subnet Model"

"One-Time-Pads", http://
 www.schneier.com/crypto gram-0210.html#7, Bruce Schneier