Probabilistic Modeling and Expectation Maximization

CMSC 678 UMBC

Course Overview (so far)

Basics of Probability

Requirements to be a distribution ("proportional to", \propto) Definitions of conditional probability, joint probability, and independence

Bayes rule, (probability) chain rule

Expectation (of a random variable & function)

Empirical Risk Minimization

Gradient Descent

Loss Functions: what is it, what does it measure, and what are some computational difficulties with them?

Regularization: what is it, how does it work, and why might you want it?

Tasks (High Level)

Data set splits: training vs. dev vs. test

Classification: Posterior decoding/MAP classifier

Classification evaluations: accuracy, precision, recall, and F scores Regression (vs. classification)

Comparing supervised vs. Unsupervised Learning and their tradeoffs: why might you want to use one vs. the other, and what are some potential issues?

Clustering: high-level goal/task, K-means as an example Tradeoffs among clustering evaluations

Linear Models

Basic form of a linear model (classification or regression) Perceptron (simple vs. other variants, like averaged or voted) When you should use perceptron (what are its assumptions?) Perceptron as SGD

Maximum Entropy Models

Meanings of feature functions and weights

How to learn the weights: gradient descent

Meaning of the maxent gradient

Neural Networks

Relation to linear models and maxent

Types (feedforward, CNN, RNN)

Learning representations (e.g., "feature maps")

What is a convolution (e.g., 1D vs 2D, high-level notions of why

you might want to change padding or the width)

How to learn: gradient descent, backprop

Common activation functions

Neural network regularization

Dimensionality Reduction

What is the basic task & goal in dimensionality reduction?

Dimensionality reduction tradeoffs: why might you want to, and what are some potential issues?

Linear Discriminant Analysis vs. Principal Component Analysis: what are they trying to do, how are they similar, how do they differ?

Kernel Methods & SVMs

Feature expansion and kernels

Two views: maximizing a separating hyperplane margin vs. loss optimization (norm minimization)

Non-separability & slack

Sub-gradients

Remember from the first day: A Terminology Buffet

what we've currently sampled ...

of problem are you solving? the data: amount of human input/number of labeled examples the **approach**: how any data are being used

Remember from the first day: A Terminology Buffet

of problem are you solving? the data: amount of human input/number of labeled examples the **approach**: how any data are being used

Outline

Latent and probabilistic modeling Generative Modeling Example 1: A Model of Rolling a Die Example 2: A Model of Conditional Die Rolls

EM (Expectation Maximization) Basic idea Three coins example Why EM works

So far, we've (mostly) had *labeled* data pairs (x, y), and built classifiers p(y | x)

So far, we've (mostly)

had *labeled* data pairs (x, y), and

built classifiers p(y | x)

What if we want to model *both* x and y together?

p(x, y)

So far, we've (mostly)

had *labeled* data pairs (x, y), and

built classifiers p(y | x)

What if we want to model *both* x and y together?

Q: Where have we used p(x,y)?

So far, we've (mostly)

had *labeled* data pairs (x, y), and

built classifiers p(y | x)

What if we want to model *both* x and y together? Q: Where

p(x, y)

Q: Where have we used p(x,y)?

A: Linear Discriminant Analysis

So far, we've (mostly)

had *labeled* data pairs (x, y), and built classifiers p(y | x)

What if we want to model *both* x and y together? Q: Where

Q: Where have we used p(x,y)?

A: Linear Discriminant Analysis

Or what if we only have data but no labels?

p(x)

- Like A3, Q1
- Piazza Q68

Generative Stories

"A useful way to develop probabilistic models is to tell a generative story. This is a *fictional* story that explains how you believe your training data came into existence." --- CIML Ch 9.5

Generative Stories

"A useful way to develop probabilistic models is to tell a generative story. This is a *fictional* story that explains how you believe your training data came into existence." --- CIML Ch 9.5

Generative stories are most often used with joint models p(x, y).... but despite their name, generative stories are applicable to both generative and conditional models

p(x, y) vs. p(y | x): Models of our Data

p(x, y) is the **joint** distribution

Two main options for estimating:

1. Directly

2.

p(x, y) vs. p(y | x): Models of our Data

p(x, y) is the **joint** distribution

Two main options for estimating:

- 1. Directly
- 2. Using Bayes rule: p(x, y) = p(x | y)p(y)

Using Bayes rule *transparently* provides a **generative story** for how our data x and labels y are generated

p(x,y) vs. p(y | x): Models of our Data

p(x, y) is the **joint** distribution

Two main options for estimating:

- 1. Directly
- 2. Using Bayes rule: p(x, y) = p(x | y)p(y)

Using Bayes rule *transparently* provides a **generative story** for how our data x and labels y are generated p(y | x) is the **conditional** distribution

Two main options for estimating:

1. Directly: used when you *only* care about making the right prediction

Examples: perceptron, logistic regression, neural networks (we've covered)

2.

p(x,y) vs. p(y | x): Models of our Data

p(x, y) is the **joint** distribution

Two main options for estimating:

- 1. Directly
- 2. Using Bayes rule: p(x, y) = p(x | y)p(y)

Using Bayes rule *transparently* provides a **generative story** for how our data x and labels y are generated

p(y | x) is the **conditional** distribution

Two main options for estimating:

1. Directly: used when you *only* care about making the right prediction

Examples: perceptron, logistic regression, neural networks (we've covered)

2. Estimate the joint

Outline

Latent and probabilistic modeling Generative Modeling Example 1: A Model of Rolling a Die Example 2: A Model of Conditional Die Roles

EM (Expectation Maximization) Basic idea Three coins example Why EM works

Example: Rolling a Die

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

Example: Rolling a Die

N different
(independent) rolls

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

 $w_1 = 1$
 $w_2 = 5$
 $w_3 = 4$

. . .

N different (independent) rolls

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

$$w_1 = 1$$

$$w_2 = 5$$

$$w_3 = 4$$

. . .

Generative Story for roll i = 1 to N:

N different (independent) rolls

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

$$w_1 = 1$$

$$w_2 = 5$$

$$w_3 = 4$$

. . .

Generative Story for roll i = 1 to N: $w_i \sim Cat(\theta)$

• • •

N different
(independent) rolls

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

 $w_1 = 1$
 $w_2 = 5$
 $w_3 = 4$
 \cdots
 $(for each'' loop becomes a product)$
 $w_i \sim Cat(\theta)$
 $w_i \sim Cat(\theta)$
 $a \text{ probability} \text{ distribution over 6 sides of the die}$
 $\sum_{k=1}^{6} \theta_k = 1$
 $0 \le \theta_k \le 1, \forall k$

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing loglikelihood a reasonable thing to do?

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing loglikelihood a reasonable thing to do?

A: Develop a good model for what we observe

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing loglikelihood a reasonable thing to do?

A: Develop a good model for what we observe

Q: (for discrete observations) What loss function do we minimize to maximize log-likelihood?

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing loglikelihood a reasonable thing to do?

Q: (for discrete observations) What loss function do we minimize to maximize log-likelihood? A: Develop a good model for what we observe

A: Cross-entropy

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability parameters

If you observe these 9 rolls... ...what are "reasonable" estimates for p(w)?

- p(3) = ? p(4) = ?
- p(5) = ? p(6) = ?

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability parameters

If you observe these 9 rolls...

...what are "reasonable" estimates for p(w)?

$$p(1) = 2/9$$
 $p(2) = 1/9$
 $p(3) = 1/9$ $p(4) = 3/9$ maximum
likelihood
estimates
 $p(5) = 1/9$ $p(6) = 1/9$

N different (independent) rolls

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

$$w_1 = 1$$

$$w_2 = 5$$

$$w_3 = 4$$

. . .

Generative Story for roll i = 1 to N: $w_i \sim Cat(\theta)$

Maximize Log-likelihood

$$\mathcal{L}(\theta) = \sum_{i} \log p_{\theta}(w_{i})$$
$$= \sum_{i} \log \theta_{w_{i}}$$

N different (independent) rolls

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

Maximize Log-likelihood

for roll i = 1 to N: $w_i \sim Cat(\theta)$

Generative Story

$$\mathcal{L}(\theta) = \sum_{i} \log \theta_{w_i}$$

Q: What's an easy way to maximize this, as written *exactly* (even without calculus)?

N different (independent) rolls

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

Generative Story for roll i = 1 to N:

$$w_i \sim \operatorname{Cat}(\theta)$$

Maximize Log-likelihood

$$\mathcal{L}(\theta) = \sum_{i} \log \theta_{w_i}$$

Q: What's an easy way to maximize this, as written *exactly* (even without calculus)?

A: Just keep increasing θ_k (we know θ must be a distribution, but it's not specified)

N different (independent) rolls

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

Maximize Log-likelihood (with distribution constraints)

$$\mathcal{L}(\theta) = \sum_{i} \log \theta_{w_i} \text{ s.t.} \sum_{k=1}^{6} \theta_k = 1$$

(we can include the inequality constraints $0 \le \theta_k$, but it complicates the problem and, *right now*, is not needed)

solve using Lagrange multipliers

N different (independent) rolls

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

Maximize Log-likelihood (with distribution constraints)

$$\mathcal{F}(\theta) = \sum_{i} \log \theta_{w_i} - \lambda \left(\sum_{k=1}^{6} \theta_k - 1 \right)$$

$$\frac{\partial \mathcal{F}(\theta)}{\partial \theta_k} = \sum_{i:w_i=k} \frac{1}{\theta_{w_i}} - \lambda \qquad \frac{\partial \mathcal{F}(\theta)}{\partial \lambda} = -\sum_{k=1}^6 \theta_k + 1$$

(we can include the inequality constraints $0 \le \theta_k$, but it complicates the problem and, *right now*, is not needed)

N different (independent) rolls

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

Maximize Log-likelihood (with distribution constraints)

$$\mathcal{F}(\theta) = \sum_{i} \log \theta_{w_i} - \lambda \left(\sum_{k=1}^{6} \theta_k - 1 \right)$$

(we can include the inequality constraints $0 \le \theta_k$, but it complicates the problem and, *right now*, is not needed)

 $\theta_k = \frac{\sum_{i:w_i=k} 1}{\lambda}$

optimal
$$\lambda$$
 when $\sum_{k=1}^{6} \theta_k = 1$

N different (independent) rolls

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

Maximize Log-likelihood (with distribution constraints)

$$\mathcal{F}(\theta) = \sum_{i} \log \theta_{w_i} - \lambda \left(\sum_{k=1}^{6} \theta_k - 1 \right)$$

(we can include the inequality constraints $0 \le \theta_k$, but it complicates the problem and, *right now*, is not needed)

$$\theta_k = \frac{\sum_{i:w_i=k} 1}{\sum_k \sum_{i:w_i=k} 1} = \frac{N_k}{N}$$

optimal λ when $\sum_{k=1}^{6} \theta_k = 1$
Outline

Latent and probabilistic modeling Generative Modeling Example 1: A Model of Rolling a Die Example 2: A Model of Conditional Die Rolls

EM (Expectation Maximization) Basic idea Three coins example Why EM works

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

add complexity to better explain what we see

 $p(z_1, w_1, z_2, w_2, \dots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N)$ $= \prod_i p(w_i|z_i) p(z_i)$

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

add complexity to better explain what we see

$$p(z_1, w_1, z_2, w_2, \dots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N)$$
$$= \prod_i p(w_i|z_i) p(z_i)$$

First flip a coin...

$$\begin{array}{c} \overbrace{} \\ \overbrace{} \\ \overbrace{} \\ \hline \end{array} \\ z_2 = H
\end{array}$$

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2)\cdots p(w_N) = \prod_{i=1}^{N} p(w_i)$$

add **complexity** to better explain what we see l

$$p(z_1, w_1, z_2, w_2, \dots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N)$$
$$= \prod_i p(w_i|z_i) p(z_i)$$

First flip a coin...

...then roll a different die depending on the coin flip

$$z_1 = T$$
 $w_1 = 1$
 $z_2 = H$ $w_2 = 5$
...

$$p(w_1, w_2, \dots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

$$add \text{ complexity to better}_{explain what we see}$$

 $p(z_1, w_1, z_2, w_2, \dots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N)$ $= \prod_i p(w_i|z_i) p(z_i)$

If you observe the z_i values, this is easy!

$$p(z_1, w_1, z_2, w_2, \dots, z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$$

If you observe the z_i
values, this is easy!

First: Write the Generative Story

$$\begin{split} \lambda &= \text{distribution over coin } (z) \\ \gamma^{(H)} &= \text{distribution for die when coin comes up heads} \\ \gamma^{(T)} &= \text{distribution for die when coin comes up tails} \\ \text{for item } i &= 1 \text{ to } N \text{:} \\ z_i \sim \text{Bernoulli}(\lambda) \end{split}$$

 $w_i \sim \operatorname{Cat}(\gamma^{(z_i)})$

$$p(z_1, w_1, z_2, w_2, \dots, z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$$

If you observe the Z_i
values, this is easy!

First: Write the Generative Story

 $\lambda = \text{distribution over coin}(z)$ $\gamma^{(H)} = \text{distribution for H die}$ $\gamma^{(T)} = \text{distribution for T die}$ for item i = 1 to N: $z_i \sim \text{Bernoulli}(\lambda)$ $w_i \sim \text{Cat}(\gamma^{(z_i)})$ Second: Generative Story \rightarrow Objective

$$\mathcal{F}(\theta) = \sum_{i}^{n} (\log \lambda_{z_i} + \log \gamma_{w_i}^{(z_i)})$$

Lagrange multiplier constraints

$$p(z_1, w_1, z_2, w_2, \dots, z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$$

If you observe the Z_i
values, this is easy!

First: Write the Generative Story

 $\lambda = \text{distribution over coin}(z)$ $\gamma^{(H)} = \text{distribution for H die}$ $\gamma^{(T)} = \text{distribution for T die}$ for item i = 1 to N: $z_i \sim \text{Bernoulli}(\lambda)$ $w_i \sim \text{Cat}(\gamma^{(z_i)})$ Second: Generative Story \rightarrow Objective

$$\mathcal{F}(\theta) = \sum_{i}^{n} (\log \lambda_{z_i} + \log \gamma_{w_i}^{(z_i)})$$
$$-\eta \left(\sum_{k=1}^{2} \lambda_k - 1\right) - \sum_{k=1}^{2} \delta_k \left(\sum_{j=1}^{6} \gamma_j^{(k)} - 1\right)$$

$$p(\mathbf{z_1}, w_1, \mathbf{z_2}, w_2, \dots, \mathbf{z_N}, w_N) = \prod_i p(w_i | \mathbf{z_i}) p(\mathbf{z_i})$$

If you observe the z_i But if you don't observe the values, this is easy! $\mathbf{z_i}$ values, this is not easy!

First: Write the Generative Story

 $\lambda = \text{distribution over coin } (z)$ $\gamma^{(H)} = \text{distribution for H die}$ $\gamma^{(T)} = \text{distribution for T die}$ for item i = 1 to N: $z_i \sim \text{Bernoulli}(\lambda)$ $w_i \sim \text{Cat}(\gamma^{(z_i)})$ Second: Generative Story \rightarrow Objective

$$\mathcal{F}(\theta) = \sum_{i}^{n} (\log \lambda_{z_i} + \log \gamma_{w_i}^{(z_i)})$$
$$-\eta \left(\sum_{k=1}^{2} \lambda_k - 1\right) - \sum_{k=1}^{2} \delta_k \left(\sum_{j=1}^{6} \gamma_j^{(k)} - 1\right)$$

$$p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$$

goal: maximize (log-)likelihood we don't actually observe these z values we just see the items w

if we *did* observe *z*, estimating the probability parameters would be easy... but we don't! :(

$$p(z_1, w_1, z_2, w_2, \dots, z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$$

goal: maximize (log-)likelihood we don't actually observe these z values we just see the items w

if we *did* observe *z*, estimating the probability parameters would be easy... but we don't! :(if we *knew* the probability parameters then we could estimate *z* and evaluate likelihood... but we don't! :(

$$p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$$

we don't actually observe these z values

$$p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$$

we don't actually observe these z values

$$p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$$

we don't actually observe these z values

$$p(z_1, w_1, z_2, w_2, \dots, z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)$$

we don't actually observe these z values

$$p(w_1, w_2, \dots, w_N) = \left(\sum_{z_1} p(z_1, w)\right) \left(\sum_{z_2} p(z_2, w)\right) \cdots \left(\sum_{z_N} p(z_N, w)\right)$$

 $p(z_1, w_1, z_2, w_2, \dots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N)$

goal: maximize *marginalized* (log-)likelihood

$$p(w_1, w_2, \dots, w_N) = \left(\sum_{z_1} p(z_1, w)\right) \left(\sum_{z_2} p(z_2, w)\right) \cdots \left(\sum_{z_N} p(z_N, w)\right)$$

if we *did* observe *z*, estimating the probability parameters would be easy... but we don't! :(

if we *knew* the probability parameters then we could estimate *z* and evaluate likelihood... but we don't! :(

if we *knew* the probability parameters then we could estimate *z* and evaluate likelihood... but we don't! :(

if we *did* observe *z*, estimating the probability parameters would be easy... but we don't! :(

if we *knew* the probability parameters then we could estimate *z* and evaluate likelihood... but we don't! :(

if we *did* observe *z*, estimating the probability parameters would be easy... but we don't! :(

if we *knew* the probability parameters then we could estimate *z* and evaluate likelihood... but we don't! :(

if we *did* observe *z*, estimating the probability parameters would be easy... but we don't! :(

Expectation Maximization:

give you model estimation the needed "spark"

Outline

Latent and probabilistic modeling Generative Modeling Example 1: A Model of Rolling a Die Example 2: A Model of Conditional Die Rolls

EM (Expectation Maximization) Basic idea Three coins example Why EM works

Expectation Maximization (EM)

0. Assume *some* value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty (compute expectations)

2. M-step: maximize log-likelihood, assuming these uncertain counts

Expectation Maximization (EM): E-step

0. Assume *some* value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these parameters

2. M-step: maximize log-likelihood, assuming these uncertain counts

Expectation Maximization (EM): E-step

0. Assume *some* value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these parameters

Expectation Maximization (EM): M-step

0. Assume *some* value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these parameters

2. M-step: maximize log-likelihood, assuming these uncertain counts $p^{(t+1)}(z)$

estimated

counts

$$p^{(t)}(z)$$

the average log-likelihood of our Complete data (z, w), averaged across all z and according to how likely our *current* model thinks z is

maximize the average log-likelihood of our complete data (z, w), averaged across all z and according to how likely our *current* model thinks z is

$\max_{\theta} \mathbb{E}_{z \sim p_{\theta}(t)}(\cdot|w) [\log p_{\theta}(z,w)]$

maximize the average log-likelihood of our complete data (z, w), averaged across all z and according to how likely our *current* model thinks z is

$\max_{\theta} \mathbb{E}_{\boldsymbol{z}} \sim p_{\theta^{(t)}}(\cdot|w) [\log p_{\theta}(\boldsymbol{z}, w)]$

maximize the average log-likelihood of our complete data (z, w), averaged across all z and according to how likely our *current* model thinks z is

 $\max_{\theta} \mathbb{E}_{Z} \sim p_{\theta}(t)(\cdot|w) \left[\log p_{\theta}(Z,w)\right]$ posterior distribution

maximize the average log-likelihood of our complete data (z, w), averaged across all z and according to how likely our *current* model thinks z is

 $\max_{\theta} \mathbb{E}_{Z} \sim p_{\theta}(t)(\cdot|w) \left[\log p_{\theta}(Z,w)\right]$ *new* parameters posterior distribution *new* parameters

maximize the average log-likelihood of our complete data (z, w), averaged across all z and according to how likely our *current* model thinks z is

 $\max_{\theta} \mathbb{E}_{z} \sim p_{\theta(t)}(\cdot|w) \left[\log p_{\theta}(z,w)\right]$ *new* parameters posterior distribution *new* parameters

E-step: count under uncertainty M-step: maximize log-likelihood

NO labeled data:

- human annotated
- relatively small/few examples

EM/generative models in this case can be seen as a type of clustering

- raw; not annotated
- plentiful

labeled data:

- human annotated ٠
- relatively small/few • examples

??? ??? ??? ??? ???

- raw; not annotated
- plentiful ٠

labeled data:

- human annotated
- relatively small/few examples

- raw; not annotated
- plentiful

labeled data:

- human annotated
- relatively small/few examples

- raw; not annotated
- plentiful

Outline

Latent and probabilistic modeling Generative Modeling Example 1: A Model of Rolling a Die Example 2: A Model of Conditional Die Rolls

EM (Expectation Maximization) Basic idea Three coins example Why EM works
Imagine three coins

Flip 1st coin (penny)

If heads: flip 2nd coin (dollar coin)

If tails: flip 3rd coin (dime)

Imagine three coins

If heads: flip 2nd coin (dollar coin) only observe these (record heads vs. tails outcome)

Imagine three coins

If heads: flip 2nd coin (dollar coin)

If tails: flip 3rd coin (dime)

observed: *a*, *b*, *e*, etc. We run the code, vs. The *run* failed

Imagine three coins

Flip 1st coin (penny)

$$p(heads) = \lambda$$

$$p(tails) = 1 - \lambda$$

If heads: flip 2nd coin (dollar coin) $p(\text{heads}) = \gamma$ If tails: flip 3rd coin (dime) $p(\text{heads}) = \psi$

 $p(tails) = 1 - \gamma$

 $p(\text{tails}) = 1 - \psi$

Imagine three coins

 $p(heads) = \lambda$ $p(heads) = \gamma$ $p(\text{tails}) = 1 - \lambda$ $p(\text{tails}) = 1 - \gamma$ $p(\text{tails}) = 1 - \psi$

 $p(heads) = \psi$

Three parameters to estimate: λ , γ , and ψ

$$\begin{array}{l} \textbf{Generative Story for Three Coins} \\ p(w_1, w_2, \dots, w_N) &= p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i) \\ & & & & \\ \hline & & & \\ \hline$$

H H T H T H H T H T T T

If *all* flips were observed

 $p(heads) = \lambda$ $p(heads) = \gamma$ $p(heads) = \psi$ $p(tails) = 1 - \lambda$ $p(tails) = 1 - \gamma$ $p(tails) = 1 - \psi$

H H T H T H H T H T T T

If *all* flips were observed

 $p(heads) = \lambda$ $p(heads) = \gamma$ $p(heads) = \psi$ $p(tails) = 1 - \lambda$ $p(tails) = 1 - \gamma$ $p(tails) = 1 - \psi$

 $p(\text{heads}) = \frac{4}{6} \qquad p(\text{heads}) = \frac{1}{4} \qquad p(\text{heads}) = \frac{1}{2}$ $p(\text{tails}) = \frac{2}{6} \qquad p(\text{tails}) = \frac{3}{4} \qquad p(\text{tails}) = \frac{1}{2}$

11	LI	Π	LI	П	- 11
11		4		-	-11
H	Т	Η	Т	Т	Т

But not all flips are observed \rightarrow set parameter values

 $p(\text{heads}) = \lambda = .6$ p(heads) = .8 p(heads) = .6p(tails) = .4 p(tails) = .2 p(tails) = .4

11	LI	П	LI	П	_ 17
77		4		-	11
H	Т	Η	Т	Т	Т

But not all flips are observed \rightarrow set parameter values

 $p(\text{heads}) = \lambda = .6$ p(heads) = .8 p(heads) = .6p(tails) = .4 p(tails) = .2 p(tails) = .4

Use these values to compute posteriors $p(\text{heads} \mid \text{observed item H}) = \frac{p(\text{heads \& H})}{p(\text{H})}$ $p(\text{heads} \mid \text{observed item T}) = \frac{p(\text{heads \& T})}{p(\text{T})}$

11	LI	П	LI	П	_ 17
77		4		-	11
H	Т	Η	Т	Т	Т

But not all flips are observed \rightarrow set parameter values

 $p(\text{heads}) = \lambda = .6$ p(heads) = .8 p(heads) = .6p(tails) = .4 p(tails) = .2 p(tails) = .4

Use these values to compute posteriors

 $p(\text{heads} \mid \text{observed item H}) = \frac{p(H \mid \text{heads})p(\text{heads})}{p(H)}$ marginal likelihood

But not all flips are observed \rightarrow set parameter values

 $p(heads) = \lambda = .6$ p(heads) = .8p(heads) = .6p(tails) = .4p(tails) = .2p(tails) = .4

Use these values to compute posteriors

$$p(\text{heads} \mid \text{observed item H}) = \frac{p(H \mid \text{heads})p(\text{heads})}{p(H)}$$

p(H | heads) = .8 p(T | heads) = .2

But not all flips are observed \rightarrow set parameter values

 $p(\text{heads}) = \lambda = .6$ p(heads) = .8 p(heads) = .6p(tails) = .4 p(tails) = .2 p(tails) = .4

Use these values to compute posteriors

$$p(\text{heads} \mid \text{observed item H}) = \frac{p(H \mid \text{heads})p(\text{heads})}{p(H)}$$

p(H | heads) = .8 p(T | heads) = .2

p(H) = p(H | heads) * p(heads) + p(H | tails) * p(tails)= .8 * .6 + .6 * .4

Use posteriors to update parameters

 $p(\text{heads} \mid \text{obs. H}) = \frac{p(\text{H} \mid \text{heads})p(\text{heads})}{p(\text{H})}$ $= \frac{.8 * .6}{.8 * .6 + .6 * .4} \approx 0.667$ $p(\text{heads} \mid \text{obs. T}) = \frac{p(\text{T} \mid \text{heads})p(\text{heads})}{p(\text{T})}$ $= \frac{.2 * .6}{.2 * .6 + .6 * .4} \approx 0.334$

Q: Is p(heads | obs. H) + p(heads | obs. T) = 1?

Use posteriors to update parameters

 $p(\text{heads} \mid \text{obs. H}) = \frac{p(\text{H} \mid \text{heads})p(\text{heads})}{p(\text{H})}$ $= \frac{.8 * .6}{.8 * .6 + .6 * .4} \approx 0.667$ $p(\text{heads} \mid \text{obs. T}) = \frac{p(\text{T} \mid \text{heads})p(\text{heads})}{p(\text{T})}$ $= \frac{.2 * .6}{.2 * .6 + .6 * .4} \approx 0.334$

Q: Is $p(heads \mid obs. H) + p(heads \mid obs. T) = 1?$

Use posteriors to update parameters

 $p(\text{heads} \mid \text{obs. H}) = \frac{p(\text{H} \mid \text{heads})p(\text{heads})}{p(\text{H})}$ $= \frac{.8 * .6}{.8 * .6 + .6 * .4} \approx 0.667$ $p(\text{heads} \mid \text{obs. T}) = \frac{p(\text{T} \mid \text{heads})p(\text{heads})}{p(\text{T})}$ $= \frac{.2 * .6}{.2 * .6 + .6 * .4} \approx 0.334$

(in general, p(heads | obs. H) and p(heads | obs. T) do NOT sum to 1)

fully observed setting $p(\text{heads}) = \frac{\# \text{ heads from penny}}{\# \text{ total flips of penny}}$

our setting: partially-observed

 $p(heads) = \frac{\# expected heads from penny}{\# total flips of penny}$

Use posteriors to update parameters

 $p(\text{heads} \mid \text{obs. H}) = \frac{p(\text{H} \mid \text{heads})p(\text{heads})}{p(\text{H})}$ $= \frac{.8 * .6}{.8 * .6 + .6 * .4} \approx 0.667$ $p(\text{heads} \mid \text{obs. T}) = \frac{p(\text{T} \mid \text{heads})p(\text{heads})}{p(\text{T})}$ $= \frac{.2 * .6}{.2 * .6 + .6 * .4} \approx 0.334$

 $p^{(t+1)}(\text{heads}) = \frac{\# \text{ expected heads from penny}}{\# \text{ total flips of penny}}$ $= \frac{\mathbb{E}_{p^{(t)}}[\# \text{ expected heads from penny}]}{\# \text{ total flips of penny}}$

our setting: partially-observed

Use posteriors to update parameters

 $p(\text{heads} \mid \text{obs. H}) = \frac{p(\text{H} \mid \text{heads})p(\text{heads})}{p(\text{H})}$ $= \frac{.8 * .6}{.8 * .6 + .6 * .4} \approx 0.667$ $p(\text{heads} \mid \text{obs. T}) = \frac{p(\text{T} \mid \text{heads})p(\text{heads})}{p(\text{T})}$ $= \frac{.2 * .6}{.2 * .6 + .6 * .4} \approx 0.334$

our setting: partiallyobserved

$$p^{(t+1)}(\text{heads}) = \frac{\# \text{ expected heads from penny}}{\# \text{ total flips of penny}}$$
$$= \frac{\mathbb{E}_{p^{(t)}}[\# \text{ expected heads from penny}]}{\# \text{ total flips of penny}}$$
$$= \frac{2 * p(\text{heads} \mid \text{obs. H}) + 4 * p(\text{heads} \mid \text{obs. T})}{6}$$
$$\approx 0.444$$

Expectation Maximization (EM)

0. Assume *some* value for your parameters

Two step, iterative algorithm:

1. E-step: count under uncertainty (compute expectations)

2. M-step: maximize log-likelihood, assuming these uncertain counts

Outline

Latent and probabilistic modeling Generative Modeling Example 1: A Model of Rolling a Die Example 2: A Model of Conditional Die Rolls

EM (Expectation Maximization) Basic idea Three coins example Why EM works

X: observed dataY: unobserved data $\mathcal{M}(\theta) =$ marginal log-likelihood of
observed data X

 $C(\theta) =$ log-likelihood of complete data (X,Y)

 $\mathcal{P}(\theta) = \text{posterior log-likelihood of}$ incomplete data Y

what do \mathcal{C} , \mathcal{M} , \mathcal{P} look like?

X: observed dataY: unobserved data $\mathcal{M}(\theta) =$ marginal log-likelihood of
observed data X

 $C(\theta) =$ log-likelihood of complete data (X,Y)

$$\mathcal{C}(\theta) = \sum_{i} \log p(x_i, y_i)$$

X: observed dataY: unobserved data $\mathcal{M}(\theta) =$ marginal log-likelihood of
observed data X

 $C(\theta) =$ log-likelihood of complete data (X,Y)

$$\mathcal{C}(\theta) = \sum_{i} \log p(x_i, y_i)$$

$$\mathcal{M}(\theta) = \sum_{i} \log p(x_i) = \sum_{i} \log \sum_{k} p(x_i, y = k)$$

X: observed dataY: unobserved data $\mathcal{M}(\theta) =$ marginal log-likelihood of
observed data X

 $C(\theta) =$ log-likelihood of complete data (X,Y)

$$\mathcal{C}(\theta) = \sum_{i} \log p(x_i, y_i)$$

$$\mathcal{M}(\theta) = \sum_{i} \log p(x_i) = \sum_{i} \log \sum_{k} p(x_i, y = k)$$

$$\mathcal{P}(\theta) = \sum_{i} \log p(y_i | x_i)$$

X: observed dataY: unobserved data
$$\mathcal{C}(\theta) = \log$$
-likelihood of complete data (X,Y) $\mathcal{M}(\theta) = marginal log-likelihood of observed data X $\mathcal{P}(\theta) = posterior log-likelihood of incomplete data Y $p_{\theta}(Y \mid X) = \frac{p_{\theta}(X, Y)}{p_{\theta}(X)}$ $\mathcal{P}(\theta) = posterior log-likelihood of incomplete data Y $p_{\theta}(Y \mid X) = \frac{p_{\theta}(X, Y)}{p_{\theta}(X)}$ $p_{\theta}(X) = \frac{p_{\theta}(X, Y)}{p_{\theta}(Y \mid X)}$ $\mathcal{C}(\theta) = \sum_{i} \log p(x_i, y_i)$ $\mathcal{M}(\theta) = \sum_{i} \log p(x_i) = \sum_{i} \log \sum_{k} p(x_i, y = k)$ $\mathcal{P}(\theta) = \sum_{i} \log p(y_i | x_i)$$$$

$$\mathcal{M}(\theta) = \mathcal{C}(\theta) - \mathcal{P}(\theta)$$

$$p_{\theta}(Y \mid X) = \frac{p_{\theta}(X, Y)}{p_{\theta}(X)} \qquad \Longrightarrow \qquad p_{\theta}(X) = \frac{p_{\theta}(X, Y)}{p_{\theta}(Y \mid X)}$$

 $\mathcal{M}(\theta) = \mathcal{C}(\theta) - \mathcal{P}(\theta)$

 $\mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{M}(\theta)|X] = \mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{C}(\theta)|X] - \mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{P}(\theta)|X]$

take a conditional expectation (why? we'll cover this more in variational inference)

$$p_{\theta}(Y \mid X) = \frac{p_{\theta}(X, Y)}{p_{\theta}(X)} \qquad \Longrightarrow \qquad p_{\theta}(X) = \frac{p_{\theta}(X, Y)}{p_{\theta}(Y \mid X)}$$

 $\mathcal{M}(\theta) = \mathcal{C}(\theta) - \mathcal{P}(\theta)$ $\mathbb{E}_{Y \sim \theta}(t) [\mathcal{M}(\theta) | X] = \mathbb{E}_{Y \sim \theta}(t) [\mathcal{C}(\theta) | X] - \mathbb{E}_{Y \sim \theta}(t) [\mathcal{P}(\theta) | X]$ $\mathcal{M}(\theta) = \mathbb{E}_{Y \sim \theta}(t) [\mathcal{C}(\theta) | X] - \mathbb{E}_{Y \sim \theta}(t) [\mathcal{P}(\theta) | X]$ $\overset{\mathcal{M}(\theta)}{=} \sum_{i} \log p(x_i) = \sum_{i} \log \sum_{k} p(x_i, y = k)$

X: observed data

 $\mathcal{M}(\theta) =$ marginal log-likelihood of observed data X

Y: unobserved data

 $C(\theta) =$ log-likelihood of complete data (X,Y)

$$\mathcal{M}(\theta) = \mathbb{E}_{Y \sim \theta^{(t)}} [\mathcal{C}(\theta) | X] - \mathbb{E}_{Y \sim \theta^{(t)}} [\mathcal{P}(\theta) | X]$$

$$\mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{C}(\theta)|X] = \sum_{i} \sum_{k} p_{\theta^{(t)}}(y = k \mid x_i) \log p(x_i, y = k)$$

X: observed dataY: unobserved data $\mathcal{M}(\theta) =$ marginal log-likelihood of
observed data X

 $C(\theta) =$ log-likelihood of complete data (X,Y)

 $\mathcal{P}(\theta) = \text{posterior log-likelihood of}$ incomplete data Y

$$\mathcal{M}(\theta) = \mathbb{E}_{Y \sim \theta^{(t)}} [\mathcal{C}(\theta) | X] - \mathbb{E}_{Y \sim \theta^{(t)}} [\mathcal{P}(\theta) | X]$$
$$Q(\theta, \theta^{(t)}) \qquad R(\theta, \theta^{(t)})$$

Let θ^* be the value that maximizes $Q(\theta, \theta^{(t)})$

X: observed dataY: unobserved data $\mathcal{M}(\theta) =$ marginal log-likelihood of
observed data X

 $C(\theta) =$ log-likelihood of complete data (X,Y)

 $\mathcal{P}(\theta) = \text{posterior log-likelihood of}$ incomplete data Y

$$\mathcal{M}(\theta) = \mathbb{E}_{Y \sim \theta^{(t)}} [\mathcal{C}(\theta) | X] - \mathbb{E}_{Y \sim \theta^{(t)}} [\mathcal{P}(\theta) | X]$$
$$Q(\theta, \theta^{(t)}) \qquad R(\theta, \theta^{(t)})$$

Let θ^* be the value that maximizes $Q(\theta, \theta^{(t)})$

$$\mathcal{M}(\theta^*) - \mathcal{M}\left(\theta^{(t)}\right) = \left(Q\left(\theta^*, \theta^{(t)}\right) - Q(\theta^{(t)}, \theta^{(t)})\right) - \left(R\left(\theta^*, \theta^{(t)}\right) - R(\theta^{(t)}, \theta^{(t)})\right)$$

X: observed dataY: unobserved data $\mathcal{M}(\theta) = \text{marginal log-likelihood of observed data X}$

 $C(\theta) =$ log-likelihood of complete data (X,Y)

 $\mathcal{P}(\theta) = \text{posterior log-likelihood of}$ incomplete data Y

$$\mathcal{M}(\theta) = \mathbb{E}_{Y \sim \theta^{(t)}} [\mathcal{C}(\theta) | X] - \mathbb{E}_{Y \sim \theta^{(t)}} [\mathcal{P}(\theta) | X]$$
$$Q(\theta, \theta^{(t)}) \qquad R(\theta, \theta^{(t)})$$

Let θ^* be the value that maximizes $Q(\theta, \theta^{(t)})$

$$\mathcal{M}(\theta^*) - \mathcal{M}(\theta^{(t)}) = \left(Q(\theta^*, \theta^{(t)}) - Q(\theta^{(t)}, \theta^{(t)})\right) - \left(R(\theta^*, \theta^{(t)}) - R(\theta^{(t)}, \theta^{(t)})\right)$$
$$\geq 0 \qquad \leq 0 \text{ (we'll see why with Jensen's)}$$

inequality, in variational inference)

X: observed dataY: unobserved data $\mathcal{M}(\theta) = \text{marginal log-likelihood of observed data X}$

٠

 $C(\theta) =$ log-likelihood of complete data (X,Y)

 $\mathcal{P}(\theta) = \text{posterior log-likelihood of}$ incomplete data Y

$$\mathcal{M}(\theta) = \mathbb{E}_{Y \sim \theta^{(t)}} [\mathcal{C}(\theta) | X] - \mathbb{E}_{Y \sim \theta^{(t)}} [\mathcal{P}(\theta) | X]$$
$$Q(\theta, \theta^{(t)}) \qquad R(\theta, \theta^{(t)})$$

Let θ^* be the value that maximizes $Q(\theta, \theta^{(t)})$

 $\mathcal{M}(\theta^*) - \mathcal{M}\left(\theta^{(t)}\right) = \left(Q\left(\theta^*, \theta^{(t)}\right) - Q(\theta^{(t)}, \theta^{(t)})\right) - \left(R\left(\theta^*, \theta^{(t)}\right) - R(\theta^{(t)}, \theta^{(t)})\right)$

EM does not decrease the marginal log-likelihood

$$\mathcal{M}(\theta^*) - \mathcal{M}(\theta^{(t)}) \ge 0$$

Generalized EM

Partial M step: find a θ that simply increases, rather than *maximizes*, Q

Partial E step: only consider *some* of the variables (an online learning algorithm)

EM has its pitfalls

Objective is not convex → converge to a bad local optimum

Computing expectations can be hard: the E-step could require clever algorithms

How well does log-likelihood correlate with an end task?

A Maximization-Maximization Procedure

we'll see this again with variational inference

Outline

Latent and probabilistic modeling Generative Modeling Example 1: A Model of Rolling a Die Example 2: A Model of Conditional Die Rolls

EM (Expectation Maximization) Basic idea Three coins example Why EM works