Probabilistic Modeling and Expectation Maximization

CMSC 678
UMBC
Course Overview (so far)

Basics of Probability
- Requirements to be a distribution (“proportional to”, ∝)
- Definitions of conditional probability, joint probability, and independence
- Bayes rule, (probability) chain rule
- Expectation (of a random variable & function)

Empirical Risk Minimization
- Gradient Descent
- Loss Functions: what is it, what does it measure, and what are some computational difficulties with them?
- Regularization: what is it, how does it work, and why might you want it?

Tasks (High Level)
- Data set splits: training vs. dev vs. test
- Classification: Posterior decoding/MAP classifier
- Classification evaluations: accuracy, precision, recall, and F scores
- Regression (vs. classification)
- Comparing supervised vs. Unsupervised Learning and their tradeoffs: why might you want to use one vs. the other, and what are some potential issues?
- Clustering: high-level goal/task, K-means as an example
- Tradeoffs among clustering evaluations

Linear Models
- Basic form of a linear model (classification or regression)
- Perceptron (simple vs. other variants, like averaged or voted)
- When you should use perceptron (what are its assumptions?)
- Perceptron as SGD

Maximum Entropy Models
- Meanings of feature functions and weights
- How to learn the weights: gradient descent
- Meaning of the maxent gradient

Neural Networks
- Relation to linear models and maxent
- Types (feedforward, CNN, RNN)
- Learning representations (e.g., "feature maps")
- What is a convolution (e.g., 1D vs 2D, high-level notions of why you might want to change padding or the width)
- How to learn: gradient descent, backprop
- Common activation functions
- Neural network regularization

Dimensionality Reduction
- What is the basic task & goal in dimensionality reduction?
- Dimensionality reduction tradeoffs: why might you want to, and what are some potential issues?
- Linear Discriminant Analysis vs. Principal Component Analysis: what are they trying to do, how are they similar, how do they differ?

Kernel Methods & SVMs
- Feature expansion and kernels
- Two views: maximizing a separating hyperplane margin vs. loss optimization (norm minimization)
- Non-separability & slack
- Sub-grads
Remember from the first day: A Terminology Buffet

the **task**: what kind of problem are you solving?

the **data**: amount of human input/number of labeled examples

the **approach**: how any data are being used

- Classification
- Regression
- Clustering

Fully-supervised

Semi-supervised

Un-supervised

Probabilistic

Generative

Conditional

Memory-based

Exemplar

Spectral

Neural...
Remember from the first day: A Terminology Buffet

- **Classification**
- **Regression**
- **Clustering**

Fully-supervised

Semi-supervised

Un-supervised

What we’ve currently sampled...

What we’ll be sampling next...

- **Probabilistic**
- **Neural**
- **Generative**
- **Conditional**
- **Memory-based**
- **Exemplar**
- **Spectral**

The task: what kind of problem are you solving?

The data: amount of human input/number of labeled examples

The approach: how any data are being used
Outline

Latent and probabilistic modeling

Generative Modeling
Example 1: A Model of Rolling a Die
Example 2: A Model of Conditional Die Rolls

EM (Expectation Maximization)
Basic idea
Three coins example
Why EM works
What is (Generative) Probabilistic Modeling?

So far, we’ve (mostly)

had *labeled* data pairs \((x, y)\), and

built classifiers \(p(y \mid x)\)
What is (Generative) Probabilistic Modeling?

So far, we’ve (mostly)

had *labeled* data pairs \((x, y)\), and

built classifiers \(p(y \mid x)\)

What if we want to model *both* \(x\) and \(y\) together?

\[p(x, y) \]
What is (Generative) Probabilistic Modeling?

So far, we’ve (mostly)

had *labeled* data pairs \((x, y)\), and

built classifiers \(p(y | x)\)

What if we want to model *both* \(x\) and \(y\) together?

\[p(x, y) \]

Q: Where have we used \(p(x, y)\)?
What is (Generative) Probabilistic Modeling?

So far, we’ve (mostly)

had *labeled* data pairs \((x, y)\), and

built classifiers \(p(y \mid x)\)

What if we want to model *both* \(x\) and \(y\) together?

\[p(x, y) \]

Q: Where have we used \(p(x,y)\)?

A: Linear Discriminant Analysis
What is (Generative) Probabilistic Modeling?

So far, we’ve (mostly)

had *labeled* data pairs \((x, y)\), and

built classifiers \(p(y \mid x)\)

What if we want to model *both* \(x\) and \(y\) together?

\[p(x, y) \]

Or what if we only have data but no labels?

\[p(x) \]

Q: Where have we used \(p(x,y)\)?

A: Linear Discriminant Analysis

- Like A3, Q1
- Piazza Q68
Generative Stories

“A useful way to develop probabilistic models is to tell a generative story. This is a *fictional* story that explains how you believe your training data came into existence.” --- CIML Ch 9.5
Generative Stories

“A useful way to develop probabilistic models is to tell a generative story. This is a fictional story that explains how you believe your training data came into existence.” --- CIML Ch 9.5

Generative stories are most often used with joint models $p(x, y)$.... but despite their name, generative stories are applicable to both generative and conditional models
p(x, y) vs. p(y | x): Models of our Data

p(x, y) is the joint distribution

Two main options for estimating:
1. Directly
2.
p(x, y) vs. p(y | x): Models of our Data

p(x, y) is the **joint** distribution

Two main options for estimating:
1. Directly
2. Using Bayes rule: \(p(x, y) = p(x \mid y)p(y) \)

Using Bayes rule *transparently* provides a **generative story** for how our data x and labels y are generated
\(p(x, y) \) vs. \(p(y \mid x) \): Models of our Data

\(p(x, y) \) is the **joint** distribution

\(p(y \mid x) \) is the **conditional** distribution

Two main options for estimating:

1. Directly
2. Using Bayes rule:
 \[
 p(x, y) = p(x \mid y)p(y)
 \]

Using Bayes rule *transparently* provides a **generative story** for how our data \(x \) and labels \(y \) are generated

Two main options for estimating:

1. Directly: used when you *only* care about making the right prediction
 Examples: perceptron, logistic regression, neural networks (we’ve covered)
2.
p(x,y) vs. p(y | x): Models of our Data

p(x, y) is the **joint** distribution

Two main options for estimating:
1. Directly
2. Using Bayes rule: \(p(x, y) = p(x | y)p(y) \)

Using Bayes rule *transparently* provides a **generative story** for how our data x and labels y are generated

p(y | x) is the **conditional** distribution

Two main options for estimating:
1. Directly: used when you *only* care about making the right prediction
 Examples: perceptron, logistic regression, neural networks (we’ve covered)
2. Estimate the joint
Outline

Latent and probabilistic modeling
Generative Modeling
Example 1: A Model of Rolling a Die
Example 2: A Model of Conditional Die Roles

EM (Expectation Maximization)
Basic idea
Three coins example
Why EM works
Example: Rolling a Die

\[p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i) \]
Example: Rolling a Die

\[p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2)\cdots p(w_N) = \prod_{i} p(w_i) \]

\(w_1 = 1 \)
\(w_2 = 5 \)
\(w_3 = 4 \)
\(\ldots \)
Generative Story for Rolling a Die

\[p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i) \]

\[w_1 = 1 \]
\[w_2 = 5 \]
\[w_3 = 4 \]
\[\ldots \]

N different (independent) rolls

Generative Story

for roll \(i = 1 \) to \(N \):
Generative Story for Rolling a Die

\[p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i) \]

N different (independent) rolls

\[w_1 = 1 \]

\[w_2 = 5 \]

\[w_3 = 4 \]

\[\vdots \]

Generative Story

for roll \(i = 1 \) to \(N \):

\[w_i \sim \text{Cat}(\theta) \]
Generative Story for Rolling a Die

\[p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_{i} p(w_i) \]

N different (independent) rolls

\[w_1 = 1 \]
\[w_2 = 5 \]
\[w_3 = 4 \]
\[... \]

“for each” loop becomes a product

Generative Story

for roll \(i = 1 \) to \(N \):

\(w_i \sim \text{Cat} (\theta) \)

Calculate \(p(w_i) \) according to provided distribution
Generative Story for Rolling a Die

\[p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_{i} p(w_i) \]

N different (independent) rolls

\[w_1 = 1 \]
\[w_2 = 5 \]
\[w_3 = 4 \]

\[\cdots \]

for roll \(i = 1 \) to \(N \):
\[w_i \sim \text{Cat}(\theta) \]

\[\sum_{k=1}^{6} \theta_k = 1 \quad 0 \leq \theta_k \leq 1, \forall k \]
Learning Parameters for the Die Model

\[p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i) \]

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing log-likelihood a reasonable thing to do?
Learning Parameters for the Die Model

\[p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_{i} p(w_i) \]

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing log-likelihood a reasonable thing to do?

A: Develop a good model for what we observe
Learning Parameters for the Die Model

\[p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i) \]

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing log-likelihood a reasonable thing to do?

A: Develop a good model for what we observe

Q: (for discrete observations) What loss function do we minimize to maximize log-likelihood?
Learning Parameters for the Die Model

\[p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i) \]

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing log-likelihood a reasonable thing to do?
A: Develop a good model for what we observe

Q: (for discrete observations) What loss function do we minimize to maximize log-likelihood?
A: Cross-entropy
Learning Parameters for the Die Model: Maximum Likelihood (Intuition)

\[p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i) \]

maximize (log-) likelihood to learn the probability parameters

If you observe these 9 rolls...

...what are “reasonable” estimates for \(p(w) \)?

\[
\begin{align*}
p(1) &= \? & p(2) &= \? \\
p(3) &= \? & p(4) &= \? \\
p(5) &= \? & p(6) &= \?
\end{align*}
\]
Learning Parameters for the Die Model: Maximum Likelihood (Intuition)

\[p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_{i} p(w_i) \]

maximize (log-) likelihood to learn the probability parameters

If you observe these 9 rolls...

...what are “reasonable” estimates for \(p(w) \)?

\[
\begin{align*}
p(1) &= 2/9 \\
p(2) &= 1/9 \\
p(3) &= 1/9 \\
p(4) &= 3/9 \\
p(5) &= 1/9 \\
p(6) &= 1/9
\end{align*}
\]
Learning Parameters for the Die Model: Maximum Likelihood (Math)

\[p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_{i} p(w_i) \]

N different (independent) rolls

\begin{align*}
 w_1 &= 1 \\
 w_2 &= 5 \\
 w_3 &= 4 \\
 \cdots
\end{align*}

Generative Story

for roll \(i = 1 \) to \(N \):
\(w_i \sim \text{Cat}(\theta) \)

Maximize Log-likelihood
\[\mathcal{L}(\theta) = \sum_{i} \log p_{\theta}(w_i) \\
 = \sum_{i} \log \theta_{w_i} \]
Learning Parameters for the Die Model: Maximum Likelihood (Math)

\[p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i) \]

Generative Story

for roll \(i = 1 \) to \(N \):

\(w_i \sim \text{Cat}(\theta) \)

Maximize Log-likelihood

\[\mathcal{L}(\theta) = \sum_i \log \theta_{w_i} \]

Q: What’s an easy way to maximize this, as written exactly (even without calculus)?
Learning Parameters for the Die Model: Maximum Likelihood (Math)

\[
p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)
\]

Generative Story
for roll \(i = 1 \) to \(N \):
\(w_i \sim \text{Cat}(\theta) \)

Maximize Log-likelihood
\[
\mathcal{L}(\theta) = \sum_i \log \theta_{w_i}
\]

Q: What’s an easy way to maximize this, as written exactly (even without calculus)?

A: Just keep increasing \(\theta_k \) (we know \(\theta \) must be a distribution, but it’s not specified)
Learning Parameters for the Die Model: Maximum Likelihood (Math)

\[p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i) \]

Maximize Log-likelihood (with distribution constraints)

\[\mathcal{L}(\theta) = \sum_i \log \theta_w \quad \text{s.t. } \sum_{k=1}^{6} \theta_k = 1 \]

solve using Lagrange multipliers

N different (independent) rolls
Learning Parameters for the Die Model: Maximum Likelihood (Math)

\[p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i) \]

Maximize Log-likelihood (with distribution constraints)

\[\mathcal{F}(\theta) = \sum_i \log \theta_{w_i} - \lambda \left(\sum_{k=1}^{6} \theta_k - 1 \right) \]

\[\frac{\partial \mathcal{F}(\theta)}{\partial \theta_k} = \sum_{i:w_i=k} \frac{1}{\theta_{w_i}} - \lambda \]

\[\frac{\partial \mathcal{F}(\theta)}{\partial \lambda} = - \sum_{k=1}^{6} \theta_k + 1 \]

N different (independent) rolls

(we can include the inequality constraints \(0 \leq \theta_k\), but it complicates the problem and, right now, is not needed)
Learning Parameters for the Die Model: Maximum Likelihood (Math)

\[p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_{i} p(w_i) \]

Maximize Log-likelihood (with distribution constraints)

\[F(\theta) = \sum_{i} \log \theta_{w_i} - \lambda \left(\sum_{k=1}^{6} \theta_k - 1 \right) \]

\[\theta_k = \frac{\sum_{i:w_i=k} 1}{\lambda} \]

optimal \(\lambda \) when \(\sum_{k=1}^{6} \theta_k = 1 \)
Learning Parameters for the Die Model: Maximum Likelihood (Math)

\[p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i) \]

Maximize Log-likelihood (with distribution constraints)

\[\mathcal{F}(\theta) = \sum_i \log \theta_{w_i} - \lambda \left(\sum_{k=1}^{6} \theta_k - 1 \right) \]

\[\theta_k = \frac{\sum_{i:w_i=k} 1}{\sum_k \sum_{i:w_i=k} 1} = \frac{N_k}{N} \]

optimal \(\lambda \) when \(\sum_{k=1}^{6} \theta_k = 1 \)

(we can include the inequality constraints \(0 \leq \theta_k \), but it complicates the problem and, right now, is not needed)
Outline

Latent and probabilistic modeling
Generative Modeling
Example 1: A Model of Rolling a Die
Example 2: A Model of Conditional Die Rolls

EM (Expectation Maximization)
Basic idea
Three coins example
Why EM works
Example: Conditionally Rolling a Die

\[p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i) \]

\[p(z_1, w_1, z_2, w_2, \ldots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N) \]
\[= \prod_i p(w_i|z_i) p(z_i) \]

Add complexity to better explain what we see.
Example: Conditionally Rolling a Die

\[p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i) \]

\[p(z_1, w_1, z_2, w_2, \ldots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N) = \prod_i p(w_i|z_i)p(z_i) \]

First flip a coin...

\[z_1 = T \]
\[z_2 = H \]

...
Example: Conditionally Rolling a Die

\[p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i) \]

\[p(z_1, w_1, z_2, w_2, \ldots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N) \]

\[= \prod_i p(w_i|z_i)p(z_i) \]

First flip a coin... ...then roll a different die depending on the coin flip

\[z_1 = T \quad w_1 = 1 \]

\[z_2 = H \quad w_2 = 5 \]

...
Learning in Conditional Die Roll Model: Maximize (Log-)Likelihood

\[p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i) \]

\[p(z_1, w_1, z_2, w_2, \ldots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N) \]
\[= \prod_i p(w_i|z_i)p(z_i) \]

If you observe the \(z_i \) values, this is easy!
Learning in Conditional Die Roll Model: Maximize (Log-)Likelihood

\[p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = \prod_i p(w_i | z_i) p(z_i) \]

If you observe the \(z_i \) values, this is easy!

First: Write the Generative Story

\(\lambda = \) distribution over coin \((z)\)
\(\gamma^{(H)} = \) distribution for die when coin comes up heads
\(\gamma^{(T)} = \) distribution for die when coin comes up tails

for item \(i = 1 \) to \(N \):
\(z_i \sim \text{Bernoulli}(\lambda) \)
\(w_i \sim \text{Cat}(\gamma^{(z_i)}) \)
Learning in Conditional Die Roll Model: Maximize \((\log-)\)Likelihood

\[
p(z_1, w_1, z_2, w_2, \ldots, z_N, w_N) = \prod_{i} p(w_i|z_i) p(z_i)
\]

If you observe the \(z_i\) values, this is easy!

First: Write the Generative Story

\[
\lambda = \text{distribution over coin (z)}
\]

\[
\gamma^{(H)} = \text{distribution for H die}
\]

\[
\gamma^{(T)} = \text{distribution for T die}
\]

for item \(i = 1\) to \(N\):

\[
\begin{align*}
z_i &\sim \text{Bernoulli}(\lambda) \\
w_i &\sim \text{Cat}(\gamma^{(z_i)})
\end{align*}
\]

Second: Generative Story \(\rightarrow\) Objective

\[
\mathcal{F}(\theta) = \sum_{i} \left(\log \lambda_{z_i} + \log \gamma_{w_i}^{(z_i)} \right)
\]

Lagrange multiplier constraints
Learning in Conditional Die Roll Model: Maximize (Log-)Likelihood

\[
p(z_1, w_1, z_2, w_2, \ldots, z_N, w_N) = \prod_i p(w_i | z_i) p(z_i)
\]

If you observe the \(z_i \) values, this is easy!

First: Write the Generative Story

\[\lambda = \text{distribution over coin (z)} \]
\[\gamma^{(H)} = \text{distribution for H die} \]
\[\gamma^{(T)} = \text{distribution for T die} \]

for item \(i = 1 \) to \(N \):

\[z_i \sim \text{Bernoulli(} \lambda \text{)} \]
\[w_i \sim \text{Cat(} \gamma^{(z_i)} \text{)} \]

Second: Generative Story → Objective

\[
F(\theta) = \sum_i^n (\log \lambda_{z_i} + \log \gamma_{w_i}^{(z_i)})
\]

\[
-\eta \left(\sum_{k=1}^2 \lambda_k - 1 \right) - \sum_{k=1}^2 \delta_k \left(\sum_{j=1}^6 \gamma_j^{(k)} - 1 \right)
\]
Learning in Conditional Die Roll Model: Maximize (Log-)Likelihood

\[p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = \prod_i p(w_i | z_i) p(z_i) \]

If you observe the \(z_i \) values, this is easy!

But if you don’t observe the \(z_i \) values, this is not easy!

First: Write the Generative Story

\(\lambda = \text{distribution over coin (z)} \)

\(\gamma^{(H)} = \text{distribution for H die} \)

\(\gamma^{(T)} = \text{distribution for T die} \)

for item \(i = 1 \) to \(N \):

\(z_i \sim \text{Bernoulli(} \lambda \text{)} \)

\(w_i \sim \text{Cat(} \gamma^{(z_i)} \text{)} \)

Second: Generative Story \(\rightarrow \) Objective

\[
\mathcal{F}(\theta) = \sum_i \left(\log \lambda_{z_i} + \log \gamma^{(z_i)}_{w_i} \right)
- \eta \left(\sum_{k=1}^{2} \lambda_k - 1 \right)
- \sum_{k=1}^{2} \delta_k \left(\sum_{j=1}^{6} \gamma^{(k)}_j - 1 \right)
\]
Example: Conditionally Rolling a Die

\[p(z_1, w_1, z_2, w_2, \ldots, z_N, w_N) = \prod_i p(w_i | z_i) p(z_i) \]

goal: maximize (log-)likelihood

we don’t actually observe these \(z \) values
we just see the items \(w \)

if we \textit{did} observe \(z \), estimating the
probability parameters would be easy...
but we don’t! :(
Example: Conditionally Rolling a Die

\[p(z_1, w_1, z_2, w_2, ..., z_N, w_N) = \prod_{i} p(w_i|z_i) p(z_i) \]

goal: maximize (log-)likelihood

we don’t actually observe these \(z \) values
we just see the items \(w \)

if we did observe \(z \), estimating the probability parameters would be easy...
but we don’t! :(

if we knew the probability parameters then we could estimate \(z \) and evaluate likelihood... but we don’t! :(

Example: Conditionally Rolling a Die

\[p(z_1, w_1, z_2, w_2, \ldots, z_N, w_N) = \prod_{i} p(w_i|z_i) p(z_i) \]

we don’t actually observe these \(z \) values

goal: maximize \textit{marginalized} (log-)likelihood
Example: Conditionally Rolling a Die

\[p(z_1, w_1, z_2, w_2, \ldots, z_N, w_N) = \prod_i p(w_i | z_i) p(z_i) \]

we don’t actually observe these \(z \) values

goal: maximize \textit{marginalized} (log-)likelihood
Example: Conditionally Rolling a Die

\[p(z_1, w_1, z_2, w_2, \ldots, z_N, w_N) = \prod_{i} p(w_i | z_i) p(z_i) \]

we don’t actually observe these \(z \) values

goal: maximize *marginalized* (log-)likelihood
Example: Conditionally Rolling a Die

\[p(z_1, w_1, z_2, w_2, \ldots, z_N, w_N) = \prod_i p(w_i | z_i) p(z_i) \]

we don’t actually observe these \(z \) values

Goal: maximize \textit{marginalized} (log-)likelihood

\[p(w_1, w_2, \ldots, w_N) = \left(\sum_{z_1} p(z_1, w) \right) \left(\sum_{z_2} p(z_2, w) \right) \cdots \left(\sum_{z_N} p(z_N, w) \right) \]
Example: Conditionally Rolling a Die

\[p(z_1, w_1, z_2, w_2, \ldots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N) \]

goal: maximize \textit{marginalized} (log-)likelihood

\[p(w_1, w_2, \ldots, w_N) = \left(\sum_{z_1} p(z_1, w) \right) \left(\sum_{z_2} p(z_2, w) \right) \cdots \left(\sum_{z_N} p(z_N, w) \right) \]

if \textit{we did} observe \(z \), estimating the probability parameters would be easy... but we don’t! :(

if \textit{we knew} the probability parameters then we could estimate \(z \) and evaluate likelihood... but we don’t! :(
if we did observe z, estimating the probability parameters would be easy...

but we don’t! :(
if we did observe z, estimating the probability parameters would be easy...
but we don’t! :(

if we knew the probability parameters then we could estimate z and evaluate likelihood... but we don’t! :(
if we knew the probability parameters then we could estimate z and evaluate likelihood... but we don’t! :(

if we did observe z, estimating the probability parameters would be easy...
but we don’t! :

Expectation Maximization:
give you model estimation the needed “spark”
Outline

Latent and probabilistic modeling
Generative Modeling
Example 1: A Model of Rolling a Die
Example 2: A Model of Conditional Die Rolls

EM (Expectation Maximization)
Basic idea
Three coins example
Why EM works
Expectation Maximization (EM)

0. Assume *some* value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty (compute expectations)

2. M-step: maximize log-likelihood, assuming these uncertain counts
Expectation Maximization (EM): E-step

0. Assume *some* value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these parameters
 \[p(z_i) \] \[\rightarrow \] \[\text{count}(z_i, w_i) \]

2. M-step: maximize log-likelihood, assuming these uncertain counts
Expectation Maximization (EM): E-step

0. Assume *some* value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these parameters

\[p(z_i) \quad \rightarrow \quad \text{count}(z_i, w_i) \]

2. M-step: maximize log-likelihood, assuming these uncertain counts

We’ve already seen this type of counting, when computing the gradient in maxent models.
Expectation Maximization (EM): M-step

0. Assume *some* value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these parameters

2. M-step: maximize log-likelihood, assuming these uncertain counts

\[p^{(t+1)}(z) \]
\[
\max \text{ the average log-likelihood of our complete data } (z, w), \text{ averaged across all } z \text{ and according to how likely our } current \text{ model thinks } z \text{ is}
\]
maximize the average log-likelihood of our complete data \((z, w)\), averaged across all \(z\) and according to how likely our \textit{current} model thinks \(z\) is

\[
\max_{\theta} \mathbb{E}_{z \sim p_{\theta}(t)(\cdot | w)} \left[\log p_{\theta}(z, w) \right]
\]
maximize the average log-likelihood of our complete data \((z, w)\), averaged across all \(z\) and according to how likely our current model thinks \(z\) is

\[
\max_{\theta} \mathbb{E}_{z \sim p_{\theta}(t) (\cdot | w)} \left[\log p_{\theta}(z, w) \right]
\]
maximize the average log-likelihood of our complete data \((z, w)\), averaged across all \(z\) and according to how likely our \textit{current} model thinks \(z\) is

\[
\max_{\theta} \mathbb{E}_{z \sim p_{\theta}(t) (\cdot | w)} \left[\log p_{\theta}(z, w) \right]
\]
maximize the average log-likelihood of our complete data \((z, w)\), averaged across all \(z\) and according to how likely our \emph{current} model thinks \(z\) is
maximize the average log-likelihood of our complete data \((z, w)\), averaged across all \(z\) and according to how likely our \textit{current} model thinks \(z\) is

\[
\max_{\theta} \mathbb{E}_z \sim p_{\theta(t)}(\cdot | w) \left[\log p_{\theta}(z, w) \right]
\]

\textit{E-step: count under uncertainty}

\textit{M-step: maximize log-likelihood}
Why EM? Un-Supervised Learning

NO labeled data:
• human annotated
• relatively small/few examples

unlabeled data:
• raw; not annotated
• plentiful

EM/generative models in this case can be seen as a type of clustering
Why EM? Semi-Supervised Learning

labeled data:
• human annotated
• relatively small/few examples

unlabeled data:
• raw; not annotated
• plentiful
Why EM? Semi-Supervised Learning

labeled data:
- human annotated
- relatively small/few examples

unlabeled data:
- raw; not annotated
- plentiful
Why EM? Semi-Supervised Learning

labeled data:
- human annotated
- relatively small/few examples

unlabeled data:
- raw; not annotated
- plentiful
Why EM? Semi-Supervised Learning

- √
- √
- √
- √
- ×
- ×
- ×
- ×

+

=

EM
Outline

Latent and probabilistic modeling
 Generative Modeling
 Example 1: A Model of Rolling a Die
 Example 2: A Model of Conditional Die Rolls

EM (Expectation Maximization)
 Basic idea
 Three coins example
 Why EM works
Imagine three coins

Flip 1st coin (\textit{penny})

If heads: flip 2nd coin (\textit{dollar coin})

If tails: flip 3rd coin (\textit{dime})
Imagine three coins

Flip 1st coin (penny)

If heads: flip 2nd coin (dollar coin)

If tails: flip 3rd coin (dime)

- only observe these (record heads vs. tails outcome)
- don’t observe this
Imagine three coins

Flip 1st coin (\textit{penny})

If heads: flip 2nd coin (\textit{dollar coin})

If tails: flip 3rd coin (\textit{dime})

unobserved: \textit{part of speech? genre?}

observed: \textit{a, b, e, etc.}

We \textit{run} the code, vs. The \textit{run} failed
Imagine three coins

Flip 1st coin (penny)\hfill

\[p(\text{heads}) = \lambda \]
\[p(\text{tails}) = 1 - \lambda \]

If heads: flip 2nd coin (dollar coin)\hfill

\[p(\text{heads}) = \gamma \]
\[p(\text{tails}) = 1 - \gamma \]

If tails: flip 3rd coin (dime)\hfill

\[p(\text{heads}) = \psi \]
\[p(\text{tails}) = 1 - \psi \]
Imagine three coins

\[p(\text{heads}) = \lambda \]
\[p(\text{tails}) = 1 - \lambda \]

\[p(\text{heads}) = \gamma \]
\[p(\text{tails}) = 1 - \gamma \]

\[p(\text{heads}) = \psi \]
\[p(\text{tails}) = 1 - \psi \]

Three parameters to estimate: \(\lambda \), \(\gamma \), and \(\psi \)
Generative Story for Three Coins

\[p(w_1, w_2, \ldots, w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i) \]

\[p(z_1, w_1, z_2, w_2, \ldots, z_N, w_N) = p(z_1)p(w_1|z_1) \cdots p(z_N)p(w_N|z_N) = \prod_i p(w_i|z_i)p(z_i) \]

\[p(\text{heads}) = \lambda \]
\[p(\text{tails}) = 1 - \lambda \]

\[p(\text{heads}) = \gamma \]
\[p(\text{tails}) = 1 - \gamma \]

Generative Story

\[\lambda = \text{distribution over penny} \]
\[\gamma = \text{distribution for dollar coin} \]
\[\psi = \text{distribution over dime} \]

for item \(i = 1 \) to \(N \):

\[z_i \sim \text{Bernoulli}(\lambda) \]
\[\text{if } z_i = H: w_i \sim \text{Bernoulli}(\gamma) \]
\[\text{else: } w_i \sim \text{Bernoulli}(\psi) \]
Three Coins Example

If all flips were observed

\[p(\text{heads}) = \lambda \quad p(\text{heads}) = \gamma \quad p(\text{heads}) = \psi \]
\[p(\text{tails}) = 1 - \lambda \quad p(\text{tails}) = 1 - \gamma \quad p(\text{tails}) = 1 - \psi \]
Three Coins Example

If all flips were observed

\[p(\text{heads}) = \lambda \quad p(\text{heads}) = \gamma \quad p(\text{heads}) = \psi \]
\[p(\text{tails}) = 1 - \lambda \quad p(\text{tails}) = 1 - \gamma \quad p(\text{tails}) = 1 - \psi \]

\[p(\text{heads}) = \frac{4}{6} \quad p(\text{heads}) = \frac{1}{4} \quad p(\text{heads}) = \frac{1}{2} \]
\[p(\text{tails}) = \frac{2}{6} \quad p(\text{tails}) = \frac{3}{4} \quad p(\text{tails}) = \frac{1}{2} \]
Three Coins Example

But not all flips are observed \(\rightarrow\) set parameter values

\[
\begin{align*}
 p(\text{heads}) &= \lambda = 0.6 &
 p(\text{heads}) &= 0.8 &
 p(\text{heads}) &= 0.6 \\
 p(\text{tails}) &= 0.4 &
 p(\text{tails}) &= 0.2 &
 p(\text{tails}) &= 0.4
\end{align*}
\]
Three Coins Example

But not all flips are observed → set parameter values

\[p(\text{heads}) = \lambda = 0.6 \quad p(\text{heads}) = 0.8 \quad p(\text{heads}) = 0.6 \]
\[p(\text{tails}) = 0.4 \quad p(\text{tails}) = 0.2 \quad p(\text{tails}) = 0.4 \]

Use these values to compute posteriors

\[p(\text{heads} \mid \text{observed item H}) = \frac{p(\text{heads} \& H)}{p(H)} \]
\[p(\text{heads} \mid \text{observed item T}) = \frac{p(\text{heads} \& T)}{p(T)} \]
Three Coins Example

But not all flips are observed \rightarrow set parameter values

$p(\text{heads}) = \lambda = .6$ \quad $p(\text{heads}) = .8$ \quad $p(\text{heads}) = .6$

$p(\text{tails}) = .4$ \quad $p(\text{tails}) = .2$ \quad $p(\text{tails}) = .4$

Use these values to compute posteriors

$$p(\text{heads} \mid \text{observed item } H) = \frac{p(H | \text{heads})p(\text{heads})}{p(H)}$$

rewrite joint using Bayes rule

marginal likelihood
Three Coins Example

But not all flips are observed → set parameter values

\[p(\text{heads}) = \lambda = 0.6 \quad p(\text{heads}) = 0.8 \quad p(\text{heads}) = 0.6 \]
\[p(\text{tails}) = 0.4 \quad p(\text{tails}) = 0.2 \quad p(\text{tails}) = 0.4 \]

Use these values to compute posteriors

\[p(\text{heads} \mid \text{observed item } H) = \frac{p(H \mid \text{heads}) p(\text{heads})}{p(H)} \]

\[p(H \mid \text{heads}) = 0.8 \quad p(T \mid \text{heads}) = 0.2 \]
Three Coins Example

But not all flips are observed \(\rightarrow \) set parameter values

\[
\begin{align*}
 p(\text{heads}) &= \lambda = .6 & p(\text{heads}) &= .8 & p(\text{heads}) &= .6 \\
 p(\text{tails}) &= .4 & p(\text{tails}) &= .2 & p(\text{tails}) &= .4
\end{align*}
\]

Use these values to compute posteriors

\[
 p(\text{heads} \mid \text{observed item } H) = \frac{p(H \mid \text{heads})p(\text{heads})}{p(H)}
\]

\[
 p(H \mid \text{heads}) = .8 & \quad p(T \mid \text{heads}) = .2
\]

\[
 p(H) = p(H \mid \text{heads}) \ast p(\text{heads}) + p(H \mid \text{tails}) \ast p(\text{tails})
\]

\[
 = .8 \ast .6 + .6 \ast .4
\]
Three Coins Example

\[H \ H \ T \ H \ T \ H \]
\[H \ T \ H \ T \ T \ T \]

Use posteriors to update parameters

\[
p(\text{heads} | \text{obs. } H) = \frac{p(H | \text{heads})p(\text{heads})}{p(H)} = \frac{.8 \times .6}{.8 \times .6 + .6 \times .4} \approx 0.667
\]

\[
p(\text{heads} | \text{obs. } T) = \frac{p(T | \text{heads})p(\text{heads})}{p(T)} = \frac{.2 \times .6}{.2 \times .6 + .6 \times .4} \approx 0.334
\]

Q: Is \(p(\text{heads} | \text{obs. } H) + p(\text{heads} | \text{obs. } T) = 1? \)
Three Coins Example

Use posteriors to update parameters

\[
p(\text{heads} \mid \text{obs. } H) = \frac{p(H \mid \text{heads})p(\text{heads})}{p(H)} = \frac{.8 \times .6}{.8 \times .6 + .6 \times .4} \approx 0.667\]

\[
p(\text{heads} \mid \text{obs. } T) = \frac{p(T \mid \text{heads})p(\text{heads})}{p(T)} = \frac{.2 \times .6}{.2 \times .6 + .6 \times .4} \approx 0.334\]

Q: Is \(p(\text{heads} \mid \text{obs. } H) + p(\text{heads} \mid \text{obs. } T) = 1? \)

A: No.
Use posteriors to update parameters

\[
p(\text{heads} | \text{obs. } H) = \frac{p(H|\text{heads})p(\text{heads})}{p(H)}
= \frac{.8 \cdot .6}{.8 \cdot .6 + .6 \cdot .4} \approx 0.667
\]

\[
p(\text{heads} | \text{obs. } T) = \frac{p(T|\text{heads})p(\text{heads})}{p(T)}
= \frac{.2 \cdot .6}{.2 \cdot .6 + .6 \cdot .4} \approx 0.334
\]

(in general, \(p(\text{heads} | \text{obs. } H)\) and \(p(\text{heads} | \text{obs. } T)\) do NOT sum to 1)

\[
p(\text{heads}) = \frac{\# \text{ heads from penny}}{\# \text{ total flips of penny}}
\]

fully observed setting

our setting: partially-observed
Three Coins Example

Use posteriors to update parameters

\[
p(\text{heads} \mid \text{obs. H}) = \frac{p(H \mid \text{heads})p(\text{heads})}{p(H)} = \frac{.8 \times .6}{.8 \times .6 + .6 \times .4} \approx 0.667
\]

\[
p(\text{heads} \mid \text{obs. T}) = \frac{p(T \mid \text{heads})p(\text{heads})}{p(T)} = \frac{.2 \times .6}{.2 \times .6 + .6 \times .4} \approx 0.334
\]

our setting: partially-observed

\[
p^{(t+1)}(\text{heads}) = \frac{\# \text{ expected heads from penny}}{\# \text{ total flips of penny}} = \mathbb{E}_{p^{(t)}}[\# \text{ expected heads from penny}] / \# \text{ total flips of penny}
\]
Three Coins Example

Use posteriors to update parameters

\[p(\text{heads} \mid \text{obs. H}) = \frac{p(H \mid \text{heads})p(\text{heads})}{p(H)} \]
\[= \frac{.8 \times .6}{.8 \times .6 + .6 \times .4} \approx 0.667 \]

\[p(\text{heads} \mid \text{obs. T}) = \frac{p(T \mid \text{heads})p(\text{heads})}{p(T)} \]
\[= \frac{.2 \times .6}{.2 \times .6 + .6 \times .4} \approx 0.334 \]

Our setting: partially observed

\[p^{(t+1)}(\text{heads}) = \frac{\# \text{expected heads from penny}}{\# \text{total flips of penny}} \]
\[= \frac{\mathbb{E}_{p(v)}[\# \text{expected heads from penny}]}{\# \text{total flips of penny}} \]
\[= \frac{2 \times p(\text{heads} \mid \text{obs. H}) + 4 \times p(\text{heads} \mid \text{obs. T})}{6} \]
\[\approx 0.444 \]
Expectation Maximization (EM)

0. Assume *some* value for your parameters

Two step, iterative algorithm:

1. E-step: count under uncertainty (compute expectations)

2. M-step: maximize log-likelihood, assuming these uncertain counts
Outline

Latent and probabilistic modeling
Generative Modeling
Example 1: A Model of Rolling a Die
Example 2: A Model of Conditional Die Rolls

EM (Expectation Maximization)
Basic idea
Three coins example
Why EM works
Why does EM work?

- \(X\): observed data
- \(Y\): unobserved data
- \(\mathcal{C}(\theta) = \) log-likelihood of complete data \((X,Y)\)
- \(\mathcal{M}(\theta) = \) marginal log-likelihood of observed data \(X\)
- \(\mathcal{P}(\theta) = \) posterior log-likelihood of incomplete data \(Y\)

what do \(\mathcal{C}, \mathcal{M}, \mathcal{P}\) look like?
Why does EM work?

\(X: \text{observed data}\)
\(Y: \text{unobserved data}\)

\(\mathcal{M}(\theta) = \text{marginal log-likelihood of observed data } X\)

\(C(\theta) = \text{log-likelihood of complete data } (X,Y)\)

\(\mathcal{P}(\theta) = \text{posterior log-likelihood of incomplete data } Y\)

\[C(\theta) = \sum_i \log p(x_i, y_i)\]
Why does EM work?

\[X: \text{observed data} \quad Y: \text{unobserved data} \]

\[C(\theta) = \text{log-likelihood of complete data (X,Y)} \]

\[M(\theta) = \text{marginal log-likelihood of observed data } X \]

\[P(\theta) = \text{posterior log-likelihood of incomplete data } Y \]

\[C(\theta) = \sum_i \log p(x_i, y_i) \]

\[M(\theta) = \sum_i \log p(x_i) = \sum_i \log \sum_k p(x_i, y = k) \]
Why does EM work?

- **X**: observed data
- **Y**: unobserved data

\(\mathcal{M}(\theta) \) = marginal log-likelihood of observed data X

\(\mathcal{C}(\theta) \) = log-likelihood of complete data (X,Y)

\(\mathcal{P}(\theta) \) = posterior log-likelihood of incomplete data Y

\[
\mathcal{C}(\theta) = \sum_i \log p(x_i, y_i)
\]

\[
\mathcal{M}(\theta) = \sum_i \log p(x_i) = \sum_i \log \sum_k p(x_i, y = k)
\]

\[
\mathcal{P}(\theta) = \sum_i \log p(y_i|x_i)
\]
Why does EM work?

\(X: \) observed data \quad \text{\(Y: \) unobserved data}

\(\mathcal{M}(\theta) = \) marginal log-likelihood of observed data \(X \)

\(\mathcal{C}(\theta) = \) log-likelihood of complete data \((X,Y) \)

\(\mathcal{P}(\theta) = \) posterior log-likelihood of incomplete data \(Y \)

\[
p_{\theta}(Y \mid X) = \frac{p_{\theta}(X, Y)}{p_{\theta}(X)} \quad \text{definition of conditional probability}
\]

\[
p_{\theta}(X) = \frac{p_{\theta}(X, Y)}{p_{\theta}(Y \mid X)} \quad \text{algebra}
\]
Why does EM work?

\[X: \text{observed data} \quad Y: \text{unobserved data} \]

\[\mathcal{M}(\theta) = \text{marginal log-likelihood of observed data } X \]

\[\mathcal{C}(\theta) = \text{log-likelihood of complete data } (X,Y) \]

\[\mathcal{P}(\theta) = \text{posterior log-likelihood of incomplete data } Y \]

\[p_\theta(Y \mid X) = \frac{p_\theta(X,Y)}{p_\theta(X)} \quad \Rightarrow \quad p_\theta(X) = \frac{p_\theta(X,Y)}{p_\theta(Y \mid X)} \]

\[\mathcal{C}(\theta) = \sum_i \log p(x_i, y_i) \]

\[\mathcal{M}(\theta) = \sum_i \log p(x_i) = \sum_i \log \sum_k p(x_i, y = k) \]

\[\mathcal{P}(\theta) = \sum_i \log p(y_i \mid x_i) \]

\[\mathcal{M}(\theta) = \mathcal{C}(\theta) - \mathcal{P}(\theta) \]
Why does EM work?

\[X: \text{observed data} \quad Y: \text{unobserved data} \]

\[\mathcal{M}(\theta) = \text{marginal log-likelihood of observed data } X \]

\[\mathcal{C}(\theta) = \text{log-likelihood of complete data } (X,Y) \]

\[\mathcal{P}(\theta) = \text{posterior log-likelihood of incomplete data } Y \]

\[p_\theta(Y \mid X) = \frac{p_\theta(X,Y)}{p_\theta(X)} \quad \rightarrow \quad p_\theta(X) = \frac{p_\theta(X,Y)}{p_\theta(Y \mid X)} \]

\[\mathcal{M}(\theta) = \mathcal{C}(\theta) - \mathcal{P}(\theta) \]

\[\mathbb{E}_{Y \sim \theta(t)}[\mathcal{M}(\theta) \mid X] = \mathbb{E}_{Y \sim \theta(t)}[\mathcal{C}(\theta) \mid X] - \mathbb{E}_{Y \sim \theta(t)}[\mathcal{P}(\theta) \mid X] \]

*take a conditional expectation
(why? we’ll cover this more in variational inference)*
Why does EM work?

<table>
<thead>
<tr>
<th>X: observed data</th>
<th>Y: unobserved data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{M}(\theta) = \text{marginal log-likelihood of observed data } X$</td>
<td>$C(\theta) = \text{log-likelihood of complete data (X,Y)}$</td>
</tr>
<tr>
<td>$\mathcal{P}(\theta) = \text{posterior log-likelihood of incomplete data } Y$</td>
<td></td>
</tr>
</tbody>
</table>

$$p_\theta(Y \mid X) = \frac{p_\theta(X, Y)}{p_\theta(X)} \quad \Rightarrow \quad p_\theta(X) = \frac{p_\theta(X, Y)}{p_\theta(Y \mid X)}$$

$$\mathcal{M}(\theta) = C(\theta) - \mathcal{P}(\theta)$$

$$\mathbb{E}_{Y \sim \theta(t)}[\mathcal{M}(\theta) \mid X] = \mathbb{E}_{Y \sim \theta(t)}[C(\theta) \mid X] - \mathbb{E}_{Y \sim \theta(t)}[\mathcal{P}(\theta) \mid X]$$

$$\mathcal{M}(\theta) = \mathbb{E}_{Y \sim \theta(t)}[C(\theta) \mid X] - \mathbb{E}_{Y \sim \theta(t)}[\mathcal{P}(\theta) \mid X]$$

\mathcal{M} already sums over Y
Why does EM work?

<table>
<thead>
<tr>
<th>X: observed data</th>
<th>Y: unobserved data</th>
</tr>
</thead>
</table>

\[\mathcal{M}(\theta) = \text{marginal log-likelihood of observed data X} \]

\[\mathcal{C}(\theta) = \text{log-likelihood of complete data (X,Y)} \]

\[\mathcal{P}(\theta) = \text{posterior log-likelihood of incomplete data Y} \]

\[
\mathcal{M}(\theta) = \mathbb{E}_{Y \sim \theta(t)}[\mathcal{C}(\theta)|X] - \mathbb{E}_{Y \sim \theta(t)}[\mathcal{P}(\theta)|X]
\]

\[\mathbb{E}_{Y \sim \theta(t)}[\mathcal{C}(\theta)|X] = \sum_{i} \sum_{k} p_{\theta(t)}(y = k | x_i) \log p(x_i, y = k)\]
Why does EM work?

<table>
<thead>
<tr>
<th>X: observed data</th>
<th>Y: unobserved data</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M(\theta) =) marginal log-likelihood of observed data (X)</td>
<td>(C(\theta) =) log-likelihood of complete data ((X, Y))</td>
</tr>
<tr>
<td>(P(\theta) =) posterior log-likelihood of incomplete data (Y)</td>
<td></td>
</tr>
</tbody>
</table>

\[
M(\theta) = \mathbb{E}_{Y \sim \theta(t)}[C(\theta)|X] - \mathbb{E}_{Y \sim \theta(t)}[P(\theta)|X]
\]

Let \(\theta^* \) be the value that maximizes \(Q(\theta, \theta(t)) \)
Why does EM work?

\(X: \text{observed data}
\]
\(Y: \text{unobserved data}
\]
\(\mathcal{M}(\theta) = \text{marginal log-likelihood of observed data } X\)
\(\mathcal{C}(\theta) = \text{log-likelihood of complete data } (X,Y)\)
\(\mathcal{P}(\theta) = \text{posterior log-likelihood of incomplete data } Y\)

\[
\mathcal{M}(\theta) = \mathbb{E}_{Y \sim \theta(t)}[\mathcal{C}(\theta)|X] - \mathbb{E}_{Y \sim \theta(t)}[\mathcal{P}(\theta)|X]
\]
\(Q(\theta, \theta^{(t)})\)
\(R(\theta, \theta^{(t)})\)

Let \(\theta^*\) be the value that maximizes \(Q(\theta, \theta^{(t)})\)

\[
\mathcal{M}(\theta^*) - \mathcal{M}(\theta^{(t)}) = (Q(\theta^*, \theta^{(t)}) - Q(\theta^{(t)}, \theta^{(t)})) - (R(\theta^*, \theta^{(t)}) - R(\theta^{(t)}, \theta^{(t)}))
\]
Why does EM work?

X: observed data
Y: unobserved data

$\mathcal{M}(\theta) = \text{marginal log-likelihood of observed data } X$

$\mathcal{C}(\theta) = \text{log-likelihood of complete data } (X,Y)$

$\mathcal{P}(\theta) = \text{posterior log-likelihood of incomplete data } Y$

$\mathcal{M}(\theta) = \mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{C}(\theta)|X] - \mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{P}(\theta)|X]$

$Q(\theta, \theta^{(t)})$

$R(\theta, \theta^{(t)})$

Let θ^* be the value that maximizes $Q(\theta, \theta^{(t)})$

$\mathcal{M}(\theta^*) - \mathcal{M}(\theta^{(t)}) = (Q(\theta^*, \theta^{(t)}) - Q(\theta^{(t)}, \theta^{(t)})) - (R(\theta^*, \theta^{(t)}) - R(\theta^{(t)}, \theta^{(t)})) \geq 0$

≤ 0 (we’ll see why with Jensen’s inequality, in variational inference)
Why does EM work?

<table>
<thead>
<tr>
<th>X: observed data</th>
<th>Y: unobserved data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{M}(\theta) = \text{marginal log-likelihood of observed data } X$</td>
<td>$\mathcal{C}(\theta) = \text{log-likelihood of complete data } (X,Y)$</td>
</tr>
</tbody>
</table>

| $\mathcal{P}(\theta) = \text{posterior log-likelihood of incomplete data } Y$ |

\[
\mathcal{M}(\theta) = \mathbb{E}_{Y \sim \theta(t)}[\mathcal{C}(\theta)|X] - \mathbb{E}_{Y \sim \theta(t)}[\mathcal{P}(\theta)|X] \\
\quad = Q(\theta, \theta(t)) - R(\theta, \theta(t)) \\
\]

Let θ^* be the value that maximizes $Q(\theta, \theta(t))$

\[
\mathcal{M}(\theta^*) - \mathcal{M}(\theta(t)) = (Q(\theta^*, \theta(t)) - Q(\theta(t), \theta(t))) - (R(\theta^*, \theta(t)) - R(\theta(t), \theta(t))) \\
\]

\[
\mathcal{M}(\theta^*) - \mathcal{M}(\theta(t)) \geq 0 \\
\text{EM does not decrease the marginal log-likelihood}
\]
Generalized EM

Partial M step: find a θ that simply increases, rather than maximizes, Q

Partial E step: only consider some of the variables (an online learning algorithm)
EM has its pitfalls

Objective is not convex \rightarrow converge to a bad local optimum

Computing expectations can be hard: the E-step could require clever algorithms

How well does log-likelihood correlate with an end task?
A Maximization-Maximization Procedure

\[F(\theta, q) = \mathbb{E}[C(\theta)] - \mathbb{E}[\log q(Z)] \]

any distribution over \(Z \)

we’ll see this again with variational inference
Outline

Latent and probabilistic modeling
 Generative Modeling
 Example 1: A Model of Rolling a Die
 Example 2: A Model of Conditional Die Rolls

EM (Expectation Maximization)
 Basic idea
 Three coins example
 Why EM works