Probabilistic Modeling and Expectation Maximization

CMSC 678
 UMBC

Course Overview (so far)

Basics of Probability
Requirements to be a distribution ("proportional to", \propto)
Definitions of conditional probability, joint probability, and independence
Bayes rule, (probability) chain rule
Expectation (of a random variable \& function)

Empirical Risk Minimization

Gradient Descent
Loss Functions: what is it, what does it measure, and what are some computational difficulties with them?
Regularization: what is it, how does it work, and why might you want it?
Tasks (High Level)
Data set splits: training vs. dev vs. test
Classification: Posterior decoding/MAP classifier
Classification evaluations: accuracy, precision, recall, and F scores Regression (vs. classification)
Comparing supervised vs. Unsupervised Learning and their tradeoffs: why might you want to use one vs. the other, and what are some potential issues?
Clustering: high-level goal/task, K-means as an example
Tradeoffs among clustering evaluations

Linear Models

Basic form of a linear model (classification or regression)
Perceptron (simple vs. other variants, like averaged or voted)
When you should use perceptron (what are its assumptions?)
Perceptron as SGD

Maximum Entropy Models

Meanings of feature functions and weights
How to learn the weights: gradient descent
Meaning of the maxent gradient

Neural Networks

Relation to linear models and maxent
Types (feedforward, CNN, RNN)
Learning representations (e.g., "feature maps")
What is a convolution (e.g., 1D vs 2D, high-level notions of why you might want to change padding or the width)
How to learn: gradient descent, backprop
Common activation functions
Neural network regularization
Dimensionality Reduction
What is the basic task \& goal in dimensionality reduction?
Dimensionality reduction tradeoffs: why might you want to, and what are some potential issues?
Linear Discriminant Analysis vs. Principal Component Analysis: what are they trying to do, how are they similar, how do they differ?

Kernel Methods \& SVMs

Feature expansion and kernels
Two views: maximizing a separating hyperplane margin vs. loss optimization (norm minimization)
Non-separability \& slack
Sub-gradients

Remember from the first day: A Terminology Buffet

what we've currently sampled...

Remember from the first day: A Terminology Buffet

what we've currently sampled...
what we'll be sampling next...

Outline

Latent and probabilistic modeling
Generative Modeling
Example 1: A Model of Rolling a Die
Example 2: A Model of Conditional Die Rolls

EM (Expectation Maximization)
Basic idea
Three coins example
Why EM works

What is (Generative) Probabilistic Modeling?

So far, we've (mostly)
had labeled data pairs (x, y), and built classifiers $\mathrm{p}(\mathrm{y} \mid \mathrm{x})$

What is (Generative) Probabilistic Modeling?

So far, we've (mostly)
had labeled data pairs (x, y), and built classifiers $\mathrm{p}(\mathrm{y} \mid \mathrm{x})$
What if we want to model both x and y together?

$$
p(x, y)
$$

What is (Generative) Probabilistic Modeling?

So far, we've (mostly)
had labeled data pairs (x, y), and built classifiers $p(y \mid x)$
What if we want to model both x and y together?

$$
p(x, y)
$$

What is (Generative) Probabilistic Modeling?

So far, we've (mostly)
had labeled data pairs (x, y), and built classifiers $p(y \mid x)$
What if we want to model both x and y together?

Q: Where have we $p(x, y)$

What is (Generative) Probabilistic Modeling?

So far, we've (mostly)
had labeled data pairs (x, y), and built classifiers $p(y \mid x)$
What if we want to model both x and y together?

Q: Where have we

$$
p(x, y)
$$

A: Linear

Discriminant Analysis
Or what if we only have data but no labels?

$$
p(x)
$$

- Like A3, Q1
- Piazza Q68

Generative Stories

"A useful way to develop probabilistic models is to tell a generative story. This is a fictional story that explains how you believe your training data came into existence." --- CIML Ch 9.5

Generative Stories

> "A useful way to develop probabilistic models is to tell a generative story. This is a fictional story that explains how you believe your training data came into existence." --- CIML Ch 9.5

Generative stories are most often used with joint models $p(x, y) \ldots$ but despite their name, generative stories are applicable to both generative and conditional models
$p(x, y)$ vs. $p(y \mid x)$: Models of our Data
$p(x, y)$ is the joint distribution

Two main options for estimating:

1. Directly
2.

$p(x, y)$ vs. $p(y \mid x)$: Models of our Data

$p(x, y)$ is the joint distribution

Two main options for estimating:

1. Directly
2. Using Bayes rule: $p(x, y)=p(x \mid y) p(y)$

Using Bayes rule transparently provides a generative story for how our data x and labels y are generated

$\mathrm{p}(\mathrm{x}, \mathrm{y})$ vs. $\mathrm{p}(\mathrm{y} \mid \mathrm{x})$: Models of our Data

$p(x, y)$ is the joint distribution

Two main options for estimating:

1. Directly
2. Using Bayes rule: $p(x, y)=$ $p(x \mid y) p(y)$

Using Bayes rule transparently provides a generative story for how our data x and labels y are generated
$p(y \mid x)$ is the conditional distribution

Two main options for estimating:

1. Directly: used when you only care about making the right prediction
Examples: perceptron, logistic regression, neural networks (we've covered)
2.

$\mathrm{p}(\mathrm{x}, \mathrm{y})$ vs. $\mathrm{p}(\mathrm{y} \mid \mathrm{x})$: Models of our Data

$p(x, y)$ is the joint distribution

Two main options for estimating:

1. Directly
2. Using Bayes rule: $p(x, y)=$ $p(x \mid y) p(y)$

Using Bayes rule transparently provides a generative story for how our data x and labels y are generated
$p(y \mid x)$ is the conditional distribution

Two main options for estimating: 1. Directly: used when you only care about making the right prediction
Examples: perceptron, logistic regression, neural networks (we've covered)
2. Estimate the joint

Outline

Latent and probabilistic modeling
Generative Modeling
Example 1: A Model of Rolling a Die Example 2: A Model of Conditional Die Roles

EM (Expectation Maximization)
Basic idea
Three coins example
Why EM works

Example: Rolling a Die

$$
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)
$$

Example: Rolling a Die

N different
(independent) rolls
$p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)$

$$
\begin{array}{ll}
w_{1}=1 & \bullet \\
w_{2}=5 & \ddots \bullet \\
w_{3}=4 & \ddots \quad \\
\hline \bullet 0
\end{array}
$$

Generative Story for Rolling a Die

N different
(independent) rolls
$p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)$

$$
\begin{array}{ll}
w_{1}=1 & \bullet \\
w_{2}=5 & \ddots \bullet \\
w_{3}=4 & \ddots: \\
\hline \bullet \bullet
\end{array}
$$

Generative Story
for roll $i=1$ to N :

Generative Story for Rolling a Die

N different
(independent) rolls

$$
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)
$$

$$
\begin{array}{ll}
w_{1}=1 & \bullet \\
w_{2}=5 & \ddots \bullet \\
w_{3}=4 & \ddots \quad \\
\hline \bullet \bullet \\
\hline 0 . \\
\hline
\end{array}
$$

Generative Story
for roll $i=1$ to N :
$w_{i} \sim \operatorname{Cat}(\theta)$

Generative Story for Rolling a Die

N different
(independent) rolls

Generative Story for Rolling a Die

N different
(independent) rolls

$\sum_{k=1}^{6} \theta_{k}=1 \quad 0 \leq \theta_{k} \leq 1, \forall k$

Learning Parameters for the Die Model

$$
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)
$$

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing loglikelihood a reasonable
thing to do?

Learning Parameters for the Die Model

$$
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)
$$

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing loglikelihood a reasonable thing to do?

A: Develop a good model for what we observe

Learning Parameters for the Die Model

$$
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)
$$

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing loglikelihood a reasonable thing to do?

$$
\begin{aligned}
& \text { A: Develop a good model } \\
& \text { for what we observe }
\end{aligned}
$$

Q: (for discrete

observations) What loss function do we minimize to maximize log-likelihood?

Learning Parameters for the Die Model

$$
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)
$$

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing loglikelihood a reasonable thing to do?

> A: Develop a good model for what we observe

A: Cross-entropy

Learning Parameters for the Die Model: Maximum Likelihood (Intuition)

$$
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)
$$

maximize (log-) likelihood to learn the probability parameters

If you observe these 9 rolls...

...what are "reasonable" estimates for $\mathrm{p}(\mathrm{w})$?

$$
\begin{array}{ll}
\mathrm{p}(1)=? & \mathrm{p}(2)=? \\
\mathrm{p}(3)=? & \mathrm{p}(4)=? \\
\mathrm{p}(5)=? & \mathrm{p}(6)=?
\end{array}
$$

Learning Parameters for the Die Model: Maximum Likelihood (Intuition)

$$
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)
$$

maximize (log-) likelihood to learn the probability parameters

If you observe these 9 rolls...

0	0
0	0

0 \& 0\end{array} \quad\)| 0 | 0 |
| :--- | :--- |
| 0 | 0 |

...what are "reasonable" estimates for $\mathrm{p}(\mathrm{w})$?

$$
\begin{array}{ll}
p(1)=2 / 9 & p(2)=1 / 9 \\
p(3)=1 / 9 & p(4)=3 / 9 \\
p(5)=1 / 9 & p(6)=1 / 9
\end{array}
$$

maximum
likelihood estimates

Learning Parameters for the Die Model: Maximum Likelihood (Math)

N different
(independent) rolls
$p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)$

$$
\begin{aligned}
& \text { Generative Story } \\
& \text { for roll } i=1 \text { to } N: \\
& w_{i} \sim \operatorname{Cat}(\theta) \\
& \begin{aligned}
\text { Maximize Log-likelihood }
\end{aligned} \\
& \begin{aligned}
\mathcal{L}(\theta) & =\sum_{i} \log p_{\theta}\left(w_{i}\right) \\
& =\sum_{i} \log \theta_{w_{i}}
\end{aligned}
\end{aligned}
$$

Learning Parameters for the Die Model: Maximum Likelihood (Math)

N different
(independent) rolls
$p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)$

Generative Story
for roll $i=1$ to N :
$w_{i} \sim \operatorname{Cat}(\theta)$

Maximize Log-likelihood

$$
\mathcal{L}(\theta)=\sum_{i} \log \theta_{w_{i}}
$$

Q: What's an easy way to maximize this, as written exactly (even without calculus)?

Learning Parameters for the Die Model: Maximum Likelihood (Math)

N different
(independent) rolls

Generative Story
for roll $i=1$ to N :
$w_{i} \sim \operatorname{Cat}(\theta)$

Maximize Log-likelihood

$$
\mathcal{L}(\theta)=\sum_{i} \log \theta_{w_{i}}
$$

Q: What's an easy way to maximize this, as written exactly (even without calculus)?

A: Just keep increasing θ_{k} (we know θ must be a distribution, but it's not specified)

Learning Parameters for the Die Model: Maximum Likelihood (Math)

N different
(independent) rolls
$p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)$

Maximize Log-likelihood (with distribution constraints)

$$
\mathcal{L}(\theta)=\sum_{i} \log \theta_{w_{i}} \text { s.t. } \sum_{k=1}^{6} \theta_{k}=1 \quad \begin{gathered}
\text { (we can include the } \\
\text { inequality constraints } \\
0 \leq \theta_{k} \text {, but it complicates } \\
\text { the problem and, right } \\
\text { now, is not needed) }
\end{gathered}
$$

solve using Lagrange multipliers

Learning Parameters for the Die Model: Maximum Likelihood (Math)

N different
(independent) rolls
$p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)$

Maximize Log-likelihood (with distribution constraints)

$$
\begin{aligned}
& \mathcal{F}(\theta)=\sum_{i} \log \theta_{w_{i}}-\lambda\left(\sum_{k=1}^{6} \theta_{k}-1\right) \\
& \text { (we can include the } \\
& \text { inequality constraints } \\
& \begin{array}{l}
0 \leq \theta_{k} \text {, but it } \\
\text { complicates the }
\end{array} \\
& \text { problem and, right } \\
& \text { now, is not needed) } \\
& \frac{\partial \mathcal{F}(\theta)}{\partial \theta_{k}}=\sum_{i: w_{i}=k} \frac{1}{\theta_{w_{i}}}-\lambda \quad \frac{\partial \mathcal{F}(\theta)}{\partial \lambda}=-\sum_{k=1}^{6} \theta_{k}+1
\end{aligned}
$$

Learning Parameters for the Die Model: Maximum Likelihood (Math)

N different
(independent) rolls
$p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)$

Maximize Log-likelihood (with distribution constraints)

$$
\begin{aligned}
& \mathcal{F}(\theta)=\sum_{i} \log \theta_{w_{i}}-\lambda\left(\sum_{k=1}^{6} \theta_{k}-1\right) \\
& \theta_{k}=\frac{\sum_{i: w_{i}=k} 1}{\lambda} \\
& \text { optimal } \lambda \text { when } \sum_{k=1}^{6} \theta_{k}=1 \\
& \text { we can include the }
\end{aligned}
$$

Learning Parameters for the Die Model: Maximum Likelihood (Math)

N different
(independent) rolls
$p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)$

Maximize Log-likelihood (with distribution constraints)

$$
\begin{gathered}
\mathcal{F}(\theta)=\sum_{i} \log \theta_{w_{i}}-\lambda\left(\sum_{k=1}^{6} \theta_{k}-1\right) \quad \begin{array}{c}
\text { (we can include the } \\
\text { inequality constraints } \\
0 \leq \theta_{k} \text { but it } \\
\text { complicates the } \\
\text { problem and, right } \\
\text { now, is not needed) }
\end{array} \\
\theta_{k}=\frac{\sum_{i: w_{i}=k} 1}{\sum_{k} \sum_{i: w_{i}=k} 1}=\frac{N_{k}}{N} \quad \text { optimal } \lambda \text { when } \sum_{k=1}^{6} \theta_{k}=1
\end{gathered}
$$

Outline

Latent and probabilistic modeling
Generative Modeling
Example 1: A Model of Rolling a Die
Example 2: A Model of Conditional Die Rolls

EM (Expectation Maximization)
Basic idea
Three coins example
Why EM works

Example: Conditionally Rolling a Die

$$
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)
$$

add complexity to better

explain what we see

$$
\begin{gathered}
p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=p\left(z_{1}\right) p\left(w_{1} \mid z_{1}\right) \cdots p\left(z_{N}\right) p\left(w_{N} \mid z_{N}\right) \\
=\prod_{i} p\left(w_{i} \mid z_{i}\right) p\left(z_{i}\right)
\end{gathered}
$$

Example: Conditionally Rolling a Die

$$
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)
$$

$$
p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=p\left(z_{1}\right) p\left(w_{1} \mid z_{1}\right) \cdots p\left(z_{N}\right) p\left(w_{N} \mid z_{N}\right)
$$

$$
=\prod_{i} p\left(w_{i} \mid z_{i}\right) p\left(z_{i}\right)
$$

First flip a coin...

Example: Conditionally Rolling a Die

$$
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)
$$ add complexity to better

$$
p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=p\left(z_{1}\right) p\left(w_{1} \mid z_{1}\right) \cdots p\left(z_{N}\right) p\left(w_{N} \mid z_{N}\right)
$$

$$
=\prod_{i} p\left(w_{i} \mid z_{i}\right) p\left(z_{i}\right)
$$

First flip a coin...
...then roll a different die

$$
\begin{array}{lll}
z_{1}=T & w_{1}=1 & \bullet \\
z_{2}=H & w_{2}=5 & \ddots \ddots
\end{array}
$$

Learning in Conditional Die Roll Model: Maximize (Log-)Likelihood

$$
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)
$$

$p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=p\left(z_{1}\right) p\left(w_{1} \mid z_{1}\right) \cdots p\left(z_{N}\right) p\left(w_{N} \mid z_{N}\right)$
$=\prod_{i} p\left(w_{i} \mid z_{i}\right) p\left(z_{i}\right)$
If you observe the z_{i}
values, this is easy!

Learning in Conditional Die Roll Model:

 Maximize (Log-)Likelihood$$
\begin{gathered}
p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=\prod_{i} p\left(w_{i} \mid z_{i}\right) p\left(z_{i}\right) \\
\text { If you observe the } z_{i} \\
\text { values, this is easy! }
\end{gathered}
$$

First: Write the Generative Story
$\lambda=$ distribution over coin (z)
$\gamma^{(H)}=$ distribution for die when coin comes up heads
$\gamma^{(T)}=$ distribution for die when coin comes up tails
for item $i=1$ to N :

$$
\begin{aligned}
& z_{i} \sim \operatorname{Bernoulli}(\lambda) \\
& w_{i} \sim \operatorname{Cat}\left(\gamma^{\left(z_{i}\right)}\right)
\end{aligned}
$$

Learning in Conditional Die Roll Model:

 Maximize (Log-)Likelihood$$
\begin{gathered}
p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=\prod_{i} p\left(w_{i} \mid z_{i}\right) p\left(z_{i}\right) \\
\text { If you observe the } z_{i} \\
\text { values, this is easy! }
\end{gathered}
$$

First: Write the Generative Story
$\lambda=$ distribution over coin (z) $\gamma^{(H)}=$ distribution for H die $\gamma^{(T)}=$ distribution for T die for item $i=1$ to N :
$z_{i} \sim \operatorname{Bernoulli}(\lambda)$
$w_{i} \sim \operatorname{Cat}\left(\gamma^{\left(z_{i}\right)}\right)$

Second: Generative Story \rightarrow Objective

$$
\begin{gathered}
\mathcal{F}(\theta)=\sum_{i}^{n}\left(\log \lambda_{z_{i}}+\log \gamma_{w_{i}}^{\left(z_{i}\right)}\right) \\
-\quad \text { Lagrange multiplier } \\
\text { constraints }
\end{gathered}
$$

Learning in Conditional Die Roll Model: Maximize (Log-)Likelihood

$$
\begin{aligned}
& p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=\prod_{\text {i }} p\left(w_{i} \mid z_{i}\right) p\left(z_{i}\right) \\
& \text { If you observe } z_{i} \\
& \text { values, this is easy! }
\end{aligned}
$$

First: Write the Generative Story
$\lambda=$ distribution over coin (z) $\gamma^{(H)}=$ distribution for H die $\gamma^{(T)}=$ distribution for T die for item $i=1$ to N :
$z_{i} \sim \operatorname{Bernoulli}(\lambda)$
$w_{i} \sim \operatorname{Cat}\left(\gamma^{\left(z_{i}\right)}\right)$

Second: Generative Story \rightarrow Objective

$$
\begin{aligned}
& \mathcal{F}(\theta)=\sum_{i}^{n}\left(\log \lambda_{z_{i}}+\log \gamma_{w_{i}}^{\left(z_{i}\right)}\right) \\
& -\eta\left(\sum_{k=1}^{2} \lambda_{k}-1\right)-\sum_{k=1}^{2} \delta_{k}\left(\sum_{j=1}^{6} r_{j}^{(k)}-1\right)
\end{aligned}
$$

Learning in Conditional Die Roll Model: Maximize (Log-)Likelihood

$$
p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=\prod_{i} p\left(w_{i} \mid z_{i}\right) p\left(z_{i}\right)
$$

If you observe the z_{i} But if you don't observe the values, this is easy! z_{i} values, this is not easy!

First: Write the Generative Story
\square $\lambda=$ distribution over coin (Z) $=$ distribution for H die
$\gamma^{(T)}=$ distribution for T die

Second: Generative Story \rightarrow Objective

$$
\begin{aligned}
& \mathcal{F}(\theta)=\sum_{i}^{n}\left(\log \lambda_{z_{i}}+\log \gamma_{w_{i}}^{\left(z_{i}\right)}\right) \\
& -\eta\left(\sum_{k=1}^{2} \lambda_{k}-1\right)-\sum_{k=1}^{2} \delta_{k}\left(\sum_{j=1}^{6} r_{j}^{(k)}-1\right)
\end{aligned}
$$

Example: Conditionally Rolling a Die

$$
p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=\prod_{i} p\left(w_{i} \mid z_{i}\right) p\left(z_{i}\right)
$$

goal: maximize (log-)likelihood we don't actually observe these z values we just see the items w
if we did observe z, estimating the
probability parameters would be easy... but we don't! :(

Example: Conditionally Rolling a Die

$$
p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=\prod_{i} p\left(w_{i} \mid z_{i}\right) p\left(z_{i}\right)
$$

goal: maximize (log-)likelihood we don't actually observe these z values we just see the items w
if we did observe z, estimating the probability parameters would be easy... but we don't! :(
if we knew the probability parameters then we could estimate z and evaluate likelihood... but we don't! :(

Example: Conditionally Rolling a Die

$$
p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=\prod_{i} p\left(w_{i} \mid z_{i}\right) p\left(z_{i}\right)
$$

we don't actually observe these z values
goal: maximize marginalized (log-)likelihood

Example: Conditionally Rolling a Die

$$
p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=\prod_{i} p\left(w_{i} \mid z_{i}\right) p\left(z_{i}\right)
$$

we don't actually observe these z values
goal: maximize marginalized (log-)likelihood

Example: Conditionally Rolling a Die

$$
p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=\prod_{i} p\left(w_{i} \mid z_{i}\right) p\left(z_{i}\right)
$$

we don't actually observe these z values
goal: maximize marginalized (log-)likelihood

Example: Conditionally Rolling a Die

$$
p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=\prod_{i} p\left(w_{i} \mid z_{i}\right) p\left(z_{i}\right)
$$

we don't actually observe these z values

goal: maximize marginalized (log-)likelihood

W

$z_{1} \& w$

$z_{2} \& w$

$z_{3} \& w$

$p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=\left(\sum_{z_{1}} p\left(z_{1}, w\right)\right)\left(\sum_{z_{2}} p\left(z_{2}, w\right)\right) \cdots\left(\sum_{z_{N}} p\left(z_{N}, w\right)\right)$

Example: Conditionally Rolling a Die

$p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=p\left(z_{1}\right) p\left(w_{1} \mid z_{1}\right) \cdots p\left(z_{N}\right) p\left(w_{N} \mid z_{N}\right)$
goal: maximize marginalized (log-)likelihood

$p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=\left(\sum_{z_{1}} p\left(z_{1}, w\right)\right)\left(\sum_{z_{2}} p\left(z_{2}, w\right)\right) \cdots\left(\sum_{z_{N}} p\left(z_{N}, w\right)\right)$
if we did observe z, estimating the probability parameters would be easy... but we don't! :(
if we knew the probability parameters then we could estimate z and evaluate likelihood... but we don't! :(
if we knew the probability parameters then we could estimate z and evaluate likelihood... but we don't! :(

if we did observe z, estimating the probability parameters would be easy... but we don't! :(
if we knew the probability parameters then we could estimate z and evaluate likelihood... but we don't! :(

if we did observe z, estimating the probability parameters would be easy... but we don't! :(
if we knew the probability parameters then we could estimate z and evaluate likelihood... but we don't! :(

if we did observe z, estimating the probability parameters would be easy... but we don't! :(

Expectation

 Maximization:give you model estimation the needed "spark"

Outline

Latent and probabilistic modeling
Generative Modeling
Example 1: A Model of Rolling a Die Example 2: A Model of Conditional Die Rolls

EM (Expectation Maximization)
Basic idea
Three coins example
Why EM works

Expectation Maximization (EM)

0. Assume some value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty (compute expectations)
2. M-step: maximize log-likelihood, assuming these uncertain counts

Expectation Maximization (EM): E-step

0. Assume some value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these parameters

2. M-step: maximize log-likelihood, assuming these uncertain counts

Expectation Maximization (EM): E-step

0. Assume some value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these parameters

2. M- We've already seen this type of counting, when se uncer computing the gradient in maxent models.

Expectation Maximization (EM): M-step

0. Assume some value for your parameters

Two step, iterative algorithm

1. E-step: count under uncertainty, assuming these parameters
2. M-step: maximize log-likelihood, assuming these uncertain counts

EM Math

the average log-likelihood of our
max complete data (z, w), averaged across all z and according to how likely our current model thinks z is

EM Math

maximize the average log-likelihood of our complete data (z, w), averaged across all z and according to how likely our current model thinks z is

EM Math

maximize the average log-likelihood of our complete data (z, w), averaged across all z and according to how likely our current model thinks z is

EM Math

maximize the average log-likelihood of our complete data (z, w), averaged across all z and according to how likely our current model thinks z is

$\left.\max _{\theta} \mathbb{E}_{Z \sim}^{\sim} p_{\theta(t)}^{\text {curent paraneters }} \cdot \mid w\right)\left[\log p_{\theta}(z, w)\right]$

posterior distribution

EM Math

maximize the average log-likelihood of our complete data (z, w), averaged across all z and according to how likely our current model thinks z is

EM Math

maximize the average log-likelihood of our complete data (z, w), averaged across all z and according to how likely our current model thinks z is

E-step: count under uncertainty
M-step: maximize log-likelihood

Why EM? Un-Supervised Learning

NO labeled data:

- human annotated
- relatively small/few examples

unlabeled data:
- raw; not annotated
- plentiful

EM/generative models in this case can be seen as a type of clustering

Why EM? Semi-Supervised Learning

labeled data:

- human annotated
- relatively small/few examples
- raw; not annotated
- plentiful

Why EM? Semi-Supervised Learning

labeled data:

- human annotated
- relatively small/few examples

unlabeled data:
- raw; not annotated
- plentiful

Why EM? Semi-Supervised Learning

labeled data:

- human annotated
- relatively small/few examples

unlabeled data:
- raw; not annotated
- plentiful

Why EM? Semi-Supervised Learning

Outline

Latent and probabilistic modeling
Generative Modeling
Example 1: A Model of Rolling a Die Example 2: A Model of Conditional Die Rolls

EM (Expectation Maximization)
Basic idea
Three coins example
Why EM works

Three Coins Example

Imagine three coins

Flip $1^{\text {st }}$ coin (penny)
If heads: flip $2^{\text {nd }}$ coin (dollar coin)

If tails: flip $3^{\text {rd }}$ coin (dime)

Three Coins Example

Imagine three coins

Flip $1^{\text {st }}$ coin (penny)
<-"........................ don't observe this

If heads: flip $2^{\text {nd }}$ coin (dollar coin)
only observe these
(record heads vs. tails
If tails: flip $3^{\text {rd }} \overleftarrow{\text { coin (dime) }}$ outcome)

Three Coins Example

Imagine three coins

Flip $1^{\text {st }}$ coin (penny) unobserved:
part of speech?
genre?
If heads: flip $2^{\text {nd }}$ coin (dollar coin)
If tails: flip $3^{\text {rd }}$ coin (dime)
observed:
a, b, e, etc.
We run the code, vs.
The run failed

Three Coins Example

Imagine three coins

Flip $1^{\text {st }}$ coin (penny)

$$
p(\text { heads })=\lambda
$$

$$
p(\text { tails })=1-\lambda
$$

If heads: flip $2^{\text {nd }}$ coin (dollar coin)

$$
p(\text { heads })=\gamma \quad p(\text { tails })=1-\gamma
$$

If tails: flip $3^{\text {rd }}$ coin (dime)

$$
p \text { (heads) }=\psi \quad p \text { (tails) }=1-\psi
$$

Three Coins Example

Imagine three coins

$$
\begin{gathered}
p(\text { heads })=\lambda \\
p(\text { tails })=1-\lambda
\end{gathered}
$$

p (heads) $=\gamma$
p (tails) $=1-\gamma$

p (heads) $=\psi$
p (tails) $=1-\psi$

Three parameters to estimate: λ, γ, and ψ

Generative Story for Three Coins

$$
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)
$$

$$
p\left(z_{1}, w_{1}, z_{2}, w_{2}, \ldots, z_{N}, w_{N}\right)=p\left(z_{1}\right) p\left(w_{1} \mid z_{1}\right) \cdots p\left(z_{N}\right) p\left(w_{N} \mid z_{N}\right)
$$

$$
=\prod_{i} p\left(w_{i} \mid z_{i}\right) p\left(z_{i}\right)
$$

$$
\begin{gathered}
p \text { (heads) }=\lambda \\
p(\text { tails })=1-\lambda
\end{gathered}
$$

Generative Story
$\lambda=$ distribution over penny
$\gamma=$ distribution for dollar coin
$\psi=$ distribution over dime for item $i=1$ to N :
$z_{i} \sim \operatorname{Bernoulli}(\lambda)$ if $z_{i}=H: w_{i} \sim \operatorname{Bernoulli}(\gamma)$
else: $w_{i} \sim \operatorname{Bernoulli}(\psi)$

Three Coins Example

```
H H T H T H
H T H T T T
```

If all flips were observed

$$
\begin{array}{ccc}
p \text { (heads })=\lambda & p \text { (heads })=\gamma & p \text { (heads) }=\psi \\
p \text { (tails })=1-\lambda & p \text { (tails })=1-\gamma & p \text { (tails) }=1-\psi
\end{array}
$$

Three Coins Example

H H T H T H
 H T H T T T

If all flips were observed

$$
\begin{array}{ccc}
p(\text { heads })=\lambda & p \text { (heads })=\gamma & p \text { (heads) }=\psi \\
p \text { (tails })=1-\lambda & p \text { (tails) }=1-\gamma & p \text { (tails) }=1-\psi \\
p \text { (heads) }=\frac{4}{6} & p \text { (heads) }=\frac{1}{4} & p \text { (heads) }=\frac{1}{2} \\
p \text { (tails })=\frac{2}{6} & p \text { (tails })=\frac{3}{4} & p \text { (tails) }=\frac{1}{2}
\end{array}
$$

Three Coins Example

But not all flips are observed \rightarrow set parameter values

$$
\left.\begin{array}{rlrl}
p(\text { heads }) & =\lambda=.6 & p(\text { heads }) & =.8 \\
p(\text { tails }) & =.4 & p(\text { tails }) & =.2
\end{array} r(\text { heads })=.6 \text { tails }\right)=.4
$$

Three Coins Example

But not all flips are observed \rightarrow set parameter values

$$
\left.\begin{array}{rlrl}
p(\text { heads }) & =\lambda=.6 & p(\text { heads }) & =.8
\end{array} r(\text { heads })=.6 \text { (tails }\right)=.4 \quad p(\text { tails })=.2 \quad p(\text { tails })=.4 \text { }
$$

Use these values to compute posteriors
$p($ heads \mid observed item H$)=\frac{p(\text { heads \& } \mathrm{H})}{p(\mathrm{H})}$
$p($ heads \mid observed item $T)=\frac{p(\text { heads } \& T)}{p(\mathrm{~T})}$

Three Coins Example

But not all flips are observed \rightarrow set parameter values

$$
\left.\begin{array}{rlrl}
p(\text { heads }) & =\lambda=.6 & p(\text { heads }) & =.8
\end{array} r(\text { heads })=.6 \text { (tails }\right)=.4 \quad p(\text { tails })=.2 \quad p(\text { tails })=.4 \text { }
$$

Use these values to compute posteriors
rewrite joint using Bayes rule
$p($ heads \mid observed item H$)=\frac{p(\mathrm{H} \mid \text { heads }) p(\text { heads })}{p(\mathrm{H})}$

Three Coins Example


```
H T H T T T
```

But not all flips are observed \rightarrow set parameter values

$$
\begin{aligned}
p(\text { heads }) & =\lambda=.6 & p \text { (heads }) & =.8 \\
p(\text { tails }) & =.4 & p \text { (tails }) & =.2
\end{aligned}
$$

Use these values to compute posteriors

$$
\begin{array}{ll}
p(\text { heads } \mid \text { observed item } \mathrm{H})= & \frac{p(\mathrm{H} \mid \text { heads }) p(\text { heads })}{p(\mathrm{H})} \\
p(\mathrm{H} \mid \text { heads })=.8 & p(\mathrm{~T} \mid \text { heads })=.2
\end{array}
$$

Three Coins Example

H	H	T	H	T	H
H	T	H	T	T	T

But not all flips are observed \rightarrow set parameter values

$$
\begin{array}{rlrl}
p(\text { heads }) & =\lambda=.6 & p \text { (heads }) & =.8 \\
p(\text { tails }) & =.4 & p(\text { tails }) & =.2
\end{array}
$$

Use these values to compute posteriors

$$
\begin{gathered}
p(\text { heads } \mid \text { observed item } \mathrm{H})=\frac{p(\mathrm{H} \mid \text { heads }) p(\text { heads })}{p(\mathrm{H})} \\
\begin{array}{r}
p(\mathrm{H} \mid \text { heads })=.8 \quad p(\mathrm{~T} \mid \text { heads })=.2 \\
p(\mathrm{H})=p(\mathrm{H} \mid \text { heads }) * p(\text { heads })+p(\mathrm{H} \mid \text { tails }) * p(\text { tails }) \\
=.8 * .6+.6 * .4
\end{array}
\end{gathered}
$$

Three Coins Example

Use posteriors to update parameters

$$
\begin{aligned}
p(\text { heads } \mid \text { obs. } \mathrm{H})=\frac{p(\mathrm{H} \mid \text { heads }) p(\text { heads })}{p(\mathrm{H})} & p(\text { heads } \mid \text { obs. } \mathrm{T})=\frac{p(\mathrm{~T} \mid \text { heads }) p \text { (heads) }}{p(\mathrm{~T})} \\
=\frac{.8 * .6}{.8 * .6+.6 * .4} \approx 0.667 & =\frac{.2 * .6}{.2 * .6+.6 * .4} \approx 0.334
\end{aligned}
$$

Q: Is p(heads / obs. H) + p(heads/ obs. T) $=1$?

Three Coins Example

Use posteriors to update parameters

$$
\begin{aligned}
p(\text { heads } \mid \text { obs. } \mathrm{H})=\frac{p(\mathrm{H} \mid \text { heads }) p(\text { heads })}{p(\mathrm{H})} & p(\text { heads } \mid \text { obs. } \mathrm{T})=\frac{p(\mathrm{~T} \mid \text { heads }) p \text { (heads) }}{p(\mathrm{~T})} \\
=\frac{.8 * .6}{.8 * .6+.6 * .4} \approx 0.667 & =\frac{.2 * .6}{.2 * .6+.6 * .4} \approx 0.334
\end{aligned}
$$

Q: Is p(heads / obs. H) + p(heads / obs. T) $=1$?

A: No.

Three Coins Example


```
H T H T T T
```


Use posteriors to update parameters

$$
\begin{gathered}
p(\text { heads } \mid \text { obs. } \mathrm{H})=\frac{p(\mathrm{H} \mid \text { heads }) p(\text { heads })}{p(\mathrm{H})} \\
=\frac{.8 * .6}{.8 * .6+.6 * .4} \approx 0.667
\end{gathered}
$$

$$
\begin{gathered}
p(\text { heads } \mid \text { obs. } \mathrm{T})=\frac{p(\mathrm{~T} \mid \text { heads }) p(\text { heads })}{p(\mathrm{~T})} \\
=\frac{.2 * .6}{.2 * .6+.6 * .4} \approx 0.334
\end{gathered}
$$

(in general, p (heads | obs. H) and p(heads/ obs. T) do NOT sum to 1)
fully observed setting

$$
p(\text { heads })=\frac{\# \text { heads from penny }}{\# \text { total flips of penny }}
$$

our setting: partially-observed

$$
p(\text { heads })=\frac{\# \text { expected heads from penny }}{\# \text { total flips of penny }}
$$

Three Coins Example

Use posteriors to update parameters

$$
\begin{aligned}
p(\text { heads } \mid \text { obs. } \mathrm{H})=\frac{p(\mathrm{H} \mid \text { heads }) p(\text { heads })}{p(\mathrm{H})} & p(\text { heads } \mid \text { obs. } \mathrm{T})=\frac{p(\mathrm{~T} \mid \text { heads }) p \text { (heads) }}{p(\mathrm{~T})} \\
=\frac{.8 * .6}{.8 * .6+.6 * .4} \approx 0.667 & =\frac{.2 * .6}{.2 * .6+.6 * .4} \approx 0.334
\end{aligned}
$$

our setting: partially-observed

$$
\begin{aligned}
& p^{(t+1)}(\text { heads })=\frac{\# \text { expected heads from penny }}{\# \text { total flips of penny }} \\
& \quad=\frac{\mathbb{E}_{p^{(t)}}[\# \text { expected heads from penny }]}{\# \text { total flips of penny }}
\end{aligned}
$$

Three Coins Example

H T H T T T

Use posteriors to update parameters

$$
\begin{gathered}
p(\text { heads } \mid \text { obs. } \mathrm{H})=\frac{p(\mathrm{H} \mid \text { heads }) p(\text { heads })}{p(\mathrm{H})} \\
\quad=\frac{.8 * .6}{.8 * .6+.6 * .4} \approx 0.667
\end{gathered}
$$

$$
\begin{gathered}
p(\text { heads } \mid \text { obs. } \mathrm{T})=\frac{p(\mathrm{~T} \mid \text { heads }) p(\text { heads })}{p(\mathrm{~T})} \\
\quad=\frac{.2 * .6}{.2 * .6+.6 * .4} \approx 0.334
\end{gathered}
$$

our setting:
partiallyobserved

$$
p^{(t+1)}(\text { heads })=\frac{\# \text { expected heads from penny }}{\# \text { total flips of penny }}
$$

$$
\begin{gathered}
=\frac{\mathbb{E}_{p^{(t)}[\# \text { expected heads from penny }]}^{\# \text { total flips of penny }}}{=\frac{2 * p(\text { heads } \mid \text { obs. } \mathrm{H})+4 * p(\text { heads } \mid \text { obs. } T)}{6}} \underset{\approx 0.444}{ }
\end{gathered}
$$

Expectation Maximization (EM)

0. Assume some value for your parameters

Two step, iterative algorithm:

1. E-step: count under uncertainty (compute expectations)
2. M-step: maximize log-likelihood, assuming these uncertain counts

Outline

Latent and probabilistic modeling
Generative Modeling
Example 1: A Model of Rolling a Die Example 2: A Model of Conditional Die Rolls

EM (Expectation Maximization)
Basic idea
Three coins example
Why EM works

Why does EM work?

what do $\mathcal{C}, \mathcal{M}, \mathcal{P}$ look like?

Why does EM work?

X: observed data \begin{tabular}{c}
$Y:$ unobserved data

$\mathcal{M}(\theta)=$| marginal log-likelihood of |
| :---: |
| observed data X |

$\mathcal{C}(\theta)=$ log-likelihood of complete data (X, Y)

$\mathcal{P}(\theta)=$| posterior log-likelihood of |
| :---: |
| incomplete data Y |

\end{tabular}

$$
\mathcal{C}(\theta)=\sum_{i} \log p\left(x_{i}, y_{i}\right)
$$

Why does EM work?

X : observed data $\quad Y$: unobserved data
 $\mathcal{M}(\theta)=$ marginal log-likelihood of observed data X
 $\mathcal{C}(\theta)=\log$-likelihood of complete data (X, Y)
 $\mathcal{P}(\theta)=$ posterior log-likelihood of incomplete data Y

$$
\begin{gathered}
\mathcal{C}(\theta)=\sum_{i} \log p\left(x_{i}, y_{i}\right) \\
\mathcal{M}(\theta)=\sum_{i} \log p\left(x_{i}\right)=\sum_{i} \log \sum_{k} p\left(x_{i}, y=k\right)
\end{gathered}
$$

Why does EM work?

X : observed data $\quad Y$: unobserved data
 $\mathcal{M}(\theta)=$ marginal log-likelihood of observed data X

$\mathcal{C}(\theta)=$ log-likelihood of complete data (X, Y)
$\mathcal{P}(\theta)=$ posterior log-likelihood of incomplete data Y

$$
\begin{gathered}
\mathcal{C}(\theta)=\sum_{i} \log p\left(x_{i}, y_{i}\right) \\
\mathcal{M}(\theta)=\sum_{i} \log p\left(x_{i}\right)=\sum_{i} \log \sum_{k} p\left(x_{i}, y=k\right) \\
\mathcal{P}(\theta)=\sum_{i} \log p\left(y_{i} \mid x_{i}\right)
\end{gathered}
$$

Why does EM work?

X: observed data \begin{tabular}{c}
$Y:$ unobserved data

$\mathcal{M}(\theta)=$| marginal log-likelihood of |
| :---: |
| observed data X |

$\mathcal{C}(\theta)=$ log-likelihood of complete data (X, Y)

$\mathcal{P}(\theta)=$| posterior log-likelihood of |
| :---: |
| incomplete data Y |

\hline
\end{tabular}

$$
p_{\theta}(Y \mid X)=\frac{p_{\theta}(X, Y)}{p_{\theta}(X)} \underset{\text { algebra }}{ } \quad p_{\theta}(X)=\frac{p_{\theta}(X, Y)}{p_{\theta}(Y \mid X)}
$$

definition of
conditional probability

Why does EM work?

$$
\begin{gathered}
X: \text { observed data } \\
\mathcal{M}(\theta)=\begin{array}{c}
\text { marginal log-likelihood of } \\
\text { observed data } \mathrm{X}
\end{array} \\
p_{\theta}(Y \mid X)=\frac{p_{\theta}(X, Y)}{p_{\theta}(X)} \longrightarrow \begin{array}{c}
\mathcal{P}(\theta)=\text { posterior log-likelihood of } \\
\text { incomplete data } Y
\end{array} \\
\mathcal{C}(\theta)=\sum_{i} \log p(X)=\frac{p_{\theta}(X, Y)}{p_{\theta}(Y \mid X)} \\
\left.\mathcal{M}, y_{i}\right) \quad \mathcal{M}(\theta)=\sum_{i} \log p\left(x_{i}\right)=\sum_{i} \log \sum_{k} p\left(x_{i}, y=k\right) \quad \mathcal{P}(\theta)=\sum_{i} \log p\left(y_{i} \mid x_{i}\right) \\
\mathcal{M}(\theta)=\mathcal{C}(\theta)-\mathcal{P}(\theta)
\end{gathered}
$$

Why does EM work?

X : observed data Y : unobserved data
 $\mathcal{M}(\theta)=$ marginal log-likelihood of observed data X
 $\mathcal{C}(\theta)=$ log-likelihood of complete data (X, Y)
 $\mathcal{P}(\theta)=$ posterior log-likelihood of incomplete data Y

$$
p_{\theta}(Y \mid X)=\frac{p_{\theta}(X, Y)}{p_{\theta}(X)} \quad p_{\theta}(X)=\frac{p_{\theta}(X, Y)}{p_{\theta}(Y \mid X)}
$$

$$
\mathcal{M}(\theta)=\mathcal{C}(\theta)-\mathcal{P}(\theta)
$$

$$
\mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{M}(\theta) \mid X]=\mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{C}(\theta) \mid X]-\mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{P}(\theta) \mid X]
$$

take a conditional expectation (why? we'll cover this more in variational inference)

Why does EM work?

X : observed data $\quad Y$: unobserved data $\quad \mathcal{C}(\theta)=\log$-likelihood of complete data (X, Y)
 $\mathcal{M}(\theta)=$ marginal log-likelihood of observed data X

$$
p_{\theta}(Y \mid X)=\frac{p_{\theta}(X, Y)}{p_{\theta}(X)} \quad p_{\theta}(X)=\frac{p_{\theta}(X, Y)}{p_{\theta}(Y \mid X)}
$$

$$
\mathcal{M}(\theta)=\mathcal{C}(\theta)-\mathcal{P}(\theta)
$$

$$
\mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{M}(\theta) \mid X]=\mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{C}(\theta) \mid X]-\mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{P}(\theta) \mid X]
$$

$$
\mathcal{M}(\theta)=\mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{C}(\theta) \mid X]-\mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{P}(\theta) \mid X]
$$

$$
\mathcal{M}(\theta)=\sum_{i} \log p\left(x_{i}\right)=\sum_{i} \log \sum_{k} p\left(x_{i}, y=k\right)
$$

Why does EM work?

X: observed data \begin{tabular}{c}
Y : unobserved data

$\mathcal{M}(\theta)=$| marginal log-likelihood of |
| :---: |
| observed data X |

$\mathcal{C}(\theta)=$ log-likelihood of complete data (X, Y)

$\mathcal{P}(\theta)=$ posterior log-likelihood of

incomplete data Y
\end{tabular}

$$
\mathcal{M}(\theta)=\mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{C}(\theta) \mid X]-\mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{P}(\theta) \mid X]
$$

$$
\mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{C}(\theta) \mid X]=\sum_{i} \sum_{k} p_{\theta^{(t)}}\left(y=k \mid x_{i}\right) \log p\left(x_{i}, y=k\right)
$$

Why does EM work?

X : observed data $\quad Y$: unobserved data
 $\mathcal{M}(\theta)=$ marginal log-likelihood of observed data X
 $$
\begin{gathered} \mathcal{C}(\theta)=\text { log-likelihood of complete data }(\mathrm{X}, \mathrm{Y}) \\ \mathcal{P}(\theta)=\text { posterior log-likelihood of } \\ \text { incomplete data } \mathrm{Y} \end{gathered}
$$

 $\mathcal{P}(\theta)=$ posterior log-likelihood of

 $\mathcal{P}(\theta)=$ posterior log-likelihood of incomplete data Y

 incomplete data Y}$$
\mathcal{M}(\theta)=\underbrace{\mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{C}(\theta) \mid X]}_{Q\left(\theta, \theta^{(t)}\right)}-\underbrace{\mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{P}(\theta) \mid X]}_{R\left(\theta, \theta^{(t)}\right)}
$$

Let θ^{*} be the value that maximizes $Q\left(\theta, \theta^{(t)}\right)$

Why does EM work?

X : observed data $\quad Y$: unobserved data
 $\mathcal{M}(\theta)=$ marginal log-likelihood of observed data X
 $$
\begin{gathered} \mathcal{C}(\theta)=\text { log-likelihood of complete data }(\mathrm{X}, \mathrm{Y}) \\ \mathcal{P}(\theta)=\text { posterior log-likelihood of } \\ \text { incomplete data } \mathrm{Y} \end{gathered}
$$

 $\mathcal{P}(\theta)=$ posterior log-likelihood of

 $\mathcal{P}(\theta)=$ posterior log-likelihood of incomplete data Y

 incomplete data Y}$$
\mathcal{M}(\theta)=\underbrace{\mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{C}(\theta) \mid X]}_{Q\left(\theta, \theta^{(t)}\right)}-\underbrace{\mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{P}(\theta) \mid X]}_{R\left(\theta, \theta^{(t)}\right)}
$$

Let θ^{*} be the value that maximizes $Q\left(\theta, \theta^{(t)}\right)$
$\mathcal{M}\left(\theta^{*}\right)-\mathcal{M}\left(\theta^{(t)}\right)=\left(Q\left(\theta^{*}, \theta^{(t)}\right)-Q\left(\theta^{(t)}, \theta^{(t)}\right)\right)-\left(R\left(\theta^{*}, \theta^{(t)}\right)-R\left(\theta^{(t)}, \theta^{(t)}\right)\right)$

Why does EM work?

X : observed data $\quad Y$: unobserved data
 $\mathcal{M}(\theta)=$ marginal log-likelihood of observed data X
 $\mathcal{C}(\theta)=$ log-likelihood of complete data (X, Y)
 $\mathcal{P}(\theta)=$ posterior log-likelihood of incomplete data Y

$$
\mathcal{M}(\theta)=\underbrace{\mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{C}(\theta) \mid X]}_{Q\left(\theta, \theta^{(t)}\right)}-\underbrace{\mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{P}(\theta) \mid X]}_{R\left(\theta, \theta^{(t)}\right)}
$$

Let θ^{*} be the value that maximizes $Q\left(\theta, \theta^{(t)}\right)$

$$
\mathcal{M} \mathcal{L}\left(\theta^{*}\right)-\mathcal{M}\left(\theta^{(t)}\right)=\left(Q\left(\theta^{*}, \theta^{(t)}\right)-Q\left(\theta^{(t)}, \theta^{(t)}\right)\right)-\left(R\left(\theta^{*}, \theta^{(t)}\right)-R\left(\theta^{(t)}, \theta^{(t)}\right)\right)
$$

Why does EM work?

X : observed data Y : unobserved data
 $\mathcal{M}(\theta)=$ marginal log-likelihood of observed data X
 $\mathcal{C}(\theta)=\log$-likelihood of complete data (X, Y)
 $\mathcal{P}(\theta)=$ posterior log-likelihood of incomplete data Y

$$
\mathcal{M}(\theta)=\underbrace{\mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{C}(\theta) \mid X]}_{Q\left(\theta, \theta^{(t)}\right)}-\underbrace{\mathbb{E}_{Y \sim \theta^{(t)}}[\mathcal{P}(\theta) \mid X]}_{R\left(\theta, \theta^{(t)}\right)}
$$

Let θ^{*} be the value that maximizes $Q\left(\theta, \theta^{(t)}\right)$

$$
\mathcal{M}\left(\theta^{*}\right)-\mathcal{M}\left(\theta^{(t)}\right)=\left(Q\left(\theta^{*}, \theta^{(t)}\right)-Q\left(\theta^{(t)}, \theta^{(t)}\right)\right)-\left(R\left(\theta^{*}, \theta^{(t)}\right)-R\left(\theta^{(t)}, \theta^{(t)}\right)\right)
$$

$$
\mathcal{M}\left(\theta^{*}\right)-\mathcal{M}\left(\theta^{(t)}\right) \geq 0
$$

EM does not decrease the marginal log-likelihood

Generalized EM

Partial M step: find a θ that simply increases, rather than maximizes, Q

Partial E step: only consider some of the variables (an online learning algorithm)

EM has its pitfalls

Objective is not convex \rightarrow converge to a bad local optimum

Computing expectations can be hard: the E-step could require clever algorithms

How well does log-likelihood correlate with an end task?

A Maximization-Maximization Procedure

$\begin{gathered}a n y \\ \text { distribution } \\ \text { over } Z\end{gathered}$

\[

\]

$F(\theta, q)=\mathbb{E}[\mathcal{C}(\theta)]$
$-\mathbb{E}[\log q(Z)]$
we'll see this again with variational inference

Outline

Latent and probabilistic modeling
Generative Modeling
Example 1: A Model of Rolling a Die
Example 2: A Model of Conditional Die Rolls

EM (Expectation Maximization)
Basic idea
Three coins example
Why EM works

