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Announcement 1: Exam 2
Friday May 18th, 1pm-3pm

You can bring any of your own hard-copy notes (or course 
material photocopies)

you don’t need to turn them in
Allowed Not Allowed

• Your notes
• CIML, ESL, UML, ITILA photocopies/printouts
• Slide printouts
• Cheat sheets that you’ve written (or typed) yourself
• Notes you’ve transcribed from online sources (w/ 

citation)

• Your computer/phone
• Your friend’s notes
• Any full (bound) textbooks
• Printouts of non-course 

materials (e.g., printouts 
from Coursera’s ML course)

(don’t assume you’ll have time to 
continuously flip through your notes)



Announcement 2: Final Project

Due: Wednesday May 23, 11:59 AM

Turn in the report, code, (best) model(s), and 
any new data



Recap from last time…



“Wisdom of the crowd:" groups of people can often 
make better decisions than individuals

Reuse previous classifiers

Boosting — a method that takes classifiers that are only 
slightly better than chance and learns an arbitrarily 

good classifier

Ensembles

Courtesy Hamed Pirsiavash



Train several classifiers and take majority of predictions

For regression use mean or median of the 
predictions

For ranking and collective classification use some 
form of averaging

Voting Multiple Classifiers

Courtesy Hamed Pirsiavash



Option 2: Bootstrap 
aggregation (bagging) 
resampling

Obtain datasets D1, D2, … , DN 
using bootstrap resampling 
from D
Train classifiers on each 
dataset and average their 
predictions

Bagging: Split the Data

sampling with 
replacement

Q: What can go wrong 
with option 1?

A: Small sample 
poor performance

Option 1: Split the data into K pieces and 
train a classifier on each

Given a 
dataset D…

get new datasets D̂ by 
random sampling with 

replacement from D
Courtesy Hamed Pirsiavash



Bagging trees with one modification

At each split point, choose a random subset of features 
of size k and pick the best among these

Train decision trees of depth d

Average results from multiple randomly trained trees

Random Forests

Q: What’s the difference 
between bagging decision 
trees and random forests?

Courtesy Hamed Pirsiavash

A: Bagging  highly 
correlated trees (reuse good 

features)



Boosting takes a poor learning algorithm (weak learner) and 
turns it into a good learning algorithm (strong learner)

Intuition behind AdaBoost: study for an exam by taking past 
exams

1.Take the exam
2.Pay less attention to questions you got right
3.Pay more attention to questions you got wrong
4.Study more, and go to step 1

Boosting weak learners

Courtesy Hamed Pirsiavash



There’s an entire book!

http://incompleteideas.
net/book/the-book-

2nd.html

http://incompleteideas.net/book/the-book-2nd.html
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Robot in a room

+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

Slide courtesy Peter Bodík

Goal: what’s the strategy to achieve the maximum reward?
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states: current location
actions: where to go next
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what is the solution? map each state to an action

a distribution over 
actions

Slide courtesy Peter Bodík
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State Representation
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state representation?

Slide courtesy/adapted Peter Bodík

move car left/right to 
keep the pole balanced



State Representation

Task: pole-balancing

state representation
position and velocity of car
angle and angular velocity of pole

what about Markov property? 

Slide courtesy/adapted Peter Bodík

move car left/right to 
keep the pole balanced



State Representation

Task: pole-balancing

state representation
position and velocity of car
angle and angular velocity of pole

what about Markov property? 
would need more info
noise in sensors, temperature, 
bending of pole

Slide courtesy/adapted Peter Bodík

move car left/right to 
keep the pole balanced
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Designing Rewards
robot in a maze

episodic task, not discounted, +1 when out, 0 for each step

chess
GOOD: +1 for winning, -1 losing
BAD: +0.25 for taking opponent’s pieces

high reward even when lose

rewards
rewards indicate what we want to accomplish
NOT how we want to accomplish it

shaping
positive reward often very “far away”
rewards for achieving subgoals (domain knowledge)
also: adjust initial policy or initial value function

Slide courtesy/adapted: Peter Bodík
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definition

satisfies

Bellman equation

idea: if you know the best action to take, then the 
best strategy maximizes the overall expected reward



Overview: Learning Strategies

Dynamic Programming

Q-learning

Monte Carlo approaches
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policies

Dynamic programming

Slide courtesy/adapted: Peter Bodík
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use value functions to structure the search for good 
policies

policy evaluation: compute Vπ from π
policy improvement: improve π based on Vπ

start with an arbitrary policy
repeat evaluation/improvement until convergence

Dynamic programming

Slide courtesy/adapted: Peter Bodík



Policy evaluation/improvement
policy evaluation: π 𝑉𝑉𝜋𝜋

Bellman equations define a system of equations
could solve, but will use iterative version

start with an arbitrary value function V0, iterate until Vk
converges

policy improvement: 𝑉𝑉𝜋𝜋 π’ 

π’ either strictly better than π, or π’ is optimal (if π = π’)



Q-learning

previous algorithms: on-policy algorithms
start with a random policy, iteratively improve
converge to optimal

Q-learning: off-policy
use any policy to estimate Q

Q directly approximates Q* (Bellman optimality equation)
independent of the policy being followed
only requirement: keep updating each (s,a) pair

Slide courtesy/adapted: Peter Bodík
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desired optimal solutionneural network
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Deep/Neural Q-learning

𝑄𝑄 𝑠𝑠, 𝑎𝑎;𝜃𝜃 ≈ 𝑄𝑄∗(𝑠𝑠, 𝑎𝑎)
desired optimal solutionneural network

Q: What’s a good 
loss function?

A: Squared 
expectation loss



Monte Carlo policy evaluation

want to estimate Vπ(s)don’t need full 
knowledge of 

environment (just 
(simulated) experience)

Slide courtesy/adapted: Peter Bodík



Monte Carlo policy evaluation
want to estimate Vπ(s)

expected return starting from s 
and following π

estimate as average of 
observed returns in state s

s0

s s

+1 -2 0 +1 -3 +5
R1(s) = +2

s0

s0

s0

s0

s0

R2(s) = +1
R3(s) = -5

R4(s) = +4

Vπ(s) ≈ (2 + 1 – 5 + 4)/4 = 0.5

don’t need full 
knowledge of 

environment (just 
(simulated) experience)

Slide courtesy/adapted: Peter Bodík



Maintaining exploration
key ingredient of RL

deterministic/greedy policy won’t explore all actions
don’t know anything about the environment at the beginning
need to try all actions to find the optimal one

maintain exploration
use soft policies instead: π(s,a)>0 (for all s,a)

ε-greedy policy
with probability 1-ε perform the optimal/greedy action
with probability ε perform a random action

will keep exploring the environment
slowly move it towards greedy policy: ε -> 0

Slide courtesy/adapted: Peter Bodík



RL Slides Credit

https://people.eecs.berkeley.edu/~jordan/courses/294-
fall09/lectures/reinforcement/slides.pptx



Course Goals
Be introduced to some of the core problems 
and solutions of ML (big picture)
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Be introduced to some of the core problems 
and solutions of ML (big picture)
Learn different ways that success and 
progress can be measured in ML
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Optimize Empirical Risk of Surrogate Loss

argmin
h

�
𝑖𝑖=1

𝑁𝑁

ℓ 𝑦𝑦𝑖𝑖 ,ℎ𝜃𝜃 𝒙𝒙𝑖𝑖

𝛻𝛻𝜃𝜃𝐹𝐹 = �
𝑖𝑖

𝜕𝜕ℓ 𝑦𝑦𝑖𝑖 , �𝑦𝑦 = ℎ𝜃𝜃 𝒙𝒙𝑖𝑖
𝜕𝜕 �𝑦𝑦

𝛻𝛻𝜃𝜃ℎ𝜃𝜃 𝒙𝒙𝒊𝒊

empirical risk 
minimization

approximate loss in a computable way



Course Goals
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and solutions of ML (big picture)
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Relate to statistics, AI [671], and specialized 
areas (e.g., NLP [673] and CV [691])
Implement ML programs



Course Goals
Be introduced to some of the core problems 
and solutions of ML (big picture)
Learn different ways that success and 
progress can be measured in ML
Relate to statistics, AI [671], and specialized 
areas (e.g., NLP [673] and CV [691])
Implement ML programs
Read and analyze research papers
Practice your (written) communication skills
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Basics of Probability
Requirements to be a distribution (“proportional to”, ∝)
Definitions of conditional probability, joint probability, and 
independence
Bayes rule, (probability) chain rule
Expectation (of a random variable & function)

Empirical Risk Minimization
Gradient Descent
Loss Functions: what is it, what does it measure, and what are 
some computational difficulties with them?
Regularization: what is it, how does it work, and why might you 
want it?

Tasks (High Level)
Data set splits: training vs. dev vs. test
Classification: Posterior decoding/MAP classifier
Classification evaluations: accuracy, precision, recall, and F scores
Regression (vs. classification)
Comparing supervised vs. Unsupervised Learning and their 
tradeoffs: why might you want to use one vs. the other, and what 
are some potential issues?
Clustering: high-level goal/task, K-means as an example
Tradeoffs among clustering evaluations

Linear Models
Basic form of a linear model (classification or regression)
Perceptron (simple vs. other variants, like averaged or voted)
When you should use perceptron (what are its assumptions?)
Perceptron as SGD

Maximum Entropy Models 
Meanings of feature functions and weights
How to learn the weights: gradient descent
Meaning of the maxent gradient

Neural Networks
Relation to linear models and maxent
Types (feedforward, CNN, RNN)
Learning representations (e.g., "feature maps”)
What is a convolution (e.g., 1D vs 2D, high-level notions of why 
you might want to change padding or the width)
How to learn: gradient descent, backprop
Common activation functions
Neural network regularization

Dimensionality Reduction
What is the basic task & goal in dimensionality reduction?
Dimensionality reduction tradeoffs: why might you want to, and 
what are some potential issues?
Linear Discriminant Analysis vs. Principal Component Analysis: 
what are they trying to do, how are they similar, how do they 
differ?

Kernel Methods & SVMs
Feature expansion and kernels
Two views: maximizing a separating hyperplane margin vs. loss 
optimization (norm minimization)
Non-separability & slack
Sub-gradients

Course Overview (Part 1)
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Linear Models
Basic form of a linear model (classification or regression)
Perceptron (simple vs. other variants, like averaged or voted)
When you should use perceptron (what are its assumptions?)
Perceptron as SGD

Maximum Entropy Models 
Meanings of feature functions and weights
How to learn the weights: gradient descent
Meaning of the maxent gradient

Neural Networks
Relation to linear models and maxent
Types (feedforward, CNN, RNN)
Learning representations (e.g., "feature maps”)
What is a convolution (e.g., 1D vs 2D, high-level notions of why 
you might want to change padding or the width)
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Dimensionality Reduction
What is the basic task & goal in dimensionality reduction?
Dimensionality reduction tradeoffs: why might you want to, and 
what are some potential issues?
Linear Discriminant Analysis vs. Principal Component Analysis: 
what are they trying to do, how are they similar, how do they 
differ?

Kernel Methods & SVMs
Feature expansion and kernels
Two views: maximizing a separating hyperplane margin vs. loss 
optimization (norm minimization)
Non-separability & slack
Sub-gradients

Course Overview (Part 2)
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doesn’t)
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