Neural Networks and Autodifferentiation

CMSC 678
UMBC
February 14th, 2018
Recap from last time...
Experimental Design & Evaluation

DEVELOP ON DEV DATA

DON'T ITERATE ON YOUR TEST DATA
Classification Evaluation: Accuracy, Precision, and Recall

Accuracy: % of items correct
\[
\frac{TP + TN}{TP + FP + FN + TN}
\]

Precision: % of selected items that are correct
\[
\frac{TP}{TP + FP}
\]

Recall: % of correct items that are selected
\[
\frac{TP}{TP + FN}
\]

<table>
<thead>
<tr>
<th>Actually Correct</th>
<th>Actually Incorrect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected/Guessed</td>
<td>True Positive (TP)</td>
</tr>
<tr>
<td>Not select/not guessed</td>
<td>False Negative (FN)</td>
</tr>
</tbody>
</table>
Maximum Entropy (Log-linear) Models

\[p(x | y) \propto \exp(\theta^T f(x, y)) \]

“model the posterior probabilities of the K classes via linear functions in \(\theta \), while at the same time ensuring that they sum to one and remain in [0, 1]” ~ Ch 4.4

“[The log-linear estimate] is the least biased estimate possible on the given information; i.e., it is maximally noncommittal with regard to missing information.” Jaynes, 1957
Normalization for Classification

\[Z = \sum \exp \left(\begin{array}{c}
\text{label } X \\
\text{weight}_1 \cdot f_1(\text{fatally shot, } X) \\
\text{weight}_2 \cdot f_2(\text{seriously wounded, } X) \\
\text{weight}_3 \cdot f_3(\text{Shining Path, } X) \\
\text{...}
\end{array} \right) \]
Connections to Other Techniques

Log-Linear Models

(Multinomial) logistic regression
Softmax regression
Max`imum Entropy models (MaxEnt)
Generalized Linear Models
Discriminative Naïve Bayes
Very shallow (sigmoidal) neural nets

\[y = \sum_{k} \theta_k x_k + b \]

the response can be a general (transformed) version of another response

logistic regression

\[\frac{\log p(x = i)}{\log p(x = K)} = \sum_{k} \theta_k f(x_k, i) + b \]
Log-Likelihood Gradient

Each component k is the difference between:

- the total value of feature f_k in the training data

 $$\sum_i f_k(x_i, y_i)$$

- and

- the total value the current model p_θ *thinks* it computes for feature f_k

 $$\sum_i \mathbb{E}_p[f(x', y_i)]$$
Outline

Neural networks: non-linear classifiers

Learning weights: backpropagation of error

Autodifferentiation (in reverse mode)
The Sigmoid function is defined as:

$$\sigma(v) = \frac{1}{1 + \exp(-sv)}$$
\[\sigma(v) = \frac{1}{1 + \exp(-sv)} \]

\[\frac{\partial \sigma(v)}{\partial v} = s \cdot \sigma(v) \cdot (1 - \sigma(v)) \]

calc practice: verify for yourself
Linear Regression/Perceptron

\[y = w^T x + b \]

output:
if \(y > 0 \): class 1
else: class 2
Linear Regression/Perceptron: A Per-Class View

\[y = \mathbf{w}_1^T \mathbf{x} + b \]
\[y = \mathbf{w}_2^T \mathbf{x} + b \]

output:
- if \(y > 0 \): class 1
- else: class 2

output:
- \(i = \text{argmax}\{y_1, y_2\} \)
- class \(i \)

binary version is special case
Logistic Regression/Classification

\[y = \sigma(w^Tx + b) \]

\[y = \text{softmax}(w^Tx + b) \]

\[y_1 \propto \exp(w_1^Tx + b) \]

\[y_2 \propto \exp(w_2^Tx + b) \]

output:

\[i = \text{argmax} \{y_1, y_2\} \]

class \(i \)
Logistic Regression/Classification

Q: Why didn’t our maxent formulation from last class have multiple weight vectors?

Output:

\[i = \text{argmax} \{ y_1, y_2 \} \]

Class \(i \)
Logistic Regression/Classification

Q: Why didn’t our maxent formulation from last class have multiple weight vectors?

A: Implicitly it did. Our formulation was
\[y \propto \exp(w^T f(x, y)) \]

output:
\[i = \arg\max \{y_1, y_2\} \]
class \(i \)
Stacking Logistic Regression

Goal: you still want to predict y

Idea: Can making an initial round of separate (independent) binary predictions h help?

$h_i = \sigma(w_i^T x + b_0)$
Stacking Logistic Regression

\[y_j = \text{softmax}(\beta_j^T h + b_1) \]

Predict \(y \) from your first round of predictions \(h \)

\[h_i = \sigma(w_i^T x + b_0) \]

Idea: data/signal compression
Stacking Logistic Regression

\[h_i = \sigma(w_i^T x + b_0) \quad \quad \quad y_j = \text{softmax}(\beta_j^T h + b_1) \]

Do we need (binary) probabilities here?
Stacking Logistic Regression

\[h_i = F(w_i^T x + b_0) \]
\[y_j = \text{softmax}(\beta_j^T h + b_1) \]

- \(F \): (non-linear) activation function
- Do we need probabilities here?
Stacking Logistic Regression

\[h_i = F(w_i^T x + b_0) \]

\[h \]

\[y_j = \text{softmax}(\beta_j^T h + b_1) \]

Do we need probabilities here?

Classification: probably
Regression: not really

\(F \): (non-linear) activation function
Stacking Logistic Regression

\[h_i = F(w_i^T x + b_0) \]
\[y_j = G(\beta_j^T h + b_1) \]

- **F**: (non-linear) activation function
- **G**: (non-linear) activation function
- Classification: softmax
- Regression: identity
Feed-Forward Neural Network:
Multilayer Perceptron

\[h_i = F(w_i^T x + b_0) \]

\[y_j = G(\beta_j^T h + b_1) \]

\(F \): (non-linear) activation function

\(G \): (non-linear) activation function

Classification: softmax
Regression: identity
Feed-Forward Neural Network

\[h_i = F(w_i^T x + b_0) \]

\[y_j = G(\beta_j^T h + b_1) \]

\(w \): # hidden X # input

\(\beta \): # output X # hidden
Why Non-Linear?

\[y_j = G(\beta_j^T h + b_1) \]

\[y_j = G \left(\beta_j^T \left(F(w_i^T x + b_0) \right)_i \right) \]
Feed-Forward

x \rightarrow \mathbf{h} \rightarrow \mathbf{y}$

\[y_1, y_2 \]

\mathbf{x}
\mathbf{h}
\mathbf{y}

β

Information/computation flow

No self-loops (recurrence/reuse of weights)
Why “Neural?”

argue from neuroscience perspective

neurons (in the brain) receive input and “fire” when sufficiently excited/activated
Universal Function Approximator

Theorem [Kurt Hornik et al., 1989]: Let F be a continuous function on a bounded subset of D-dimensional space. Then there exists a two-layer network G with finite number of hidden units that approximates F arbitrarily well. For all \(x \) in the domain of F, \(|F(x) - G(x) | < \varepsilon \)

“a two-layer network can approximate any function”

Going from one to two layers dramatically improves the representation power of the network
How Deep Can They Be?

So many choices:
Architecture
of hidden layers
of units per hidden layer

Computational Issues:
Vanishing gradients
Gradients shrink as one moves away from the output layer
Convergence is slow

Opportunities:
Training deep networks is an active area of research
Layer-wise initialization (perhaps using unsupervised data)
Engineering: GPUs to train on massive labelled datasets
Some Results: Digit Classification

Figure 11.10. Architecture of the five networks used in the ZIP code example.

(similar to MNIST in A2, but not exactly the same)

Figure 11.11. Test performance curves, as a function of the number of training epochs, for the five networks of Table 11.1 applied to the ZIP code data.
Outline

Neural networks: non-linear classifiers

Learning weights: backpropagation of error

Autodifferentiation (in reverse mode)
Empirical Risk Minimization

Cross entropy loss
\[\ell^{\text{xent}}(\overrightarrow{y^*}, y) = - \sum_k \overrightarrow{y^*}[k] \log p(y = k) \]

mean squared error/L2 loss
\[\ell^{\text{L2}}(\overrightarrow{y^*}, y) = (\overrightarrow{y^*} - y)^2 \]

squared expectation loss
\[\ell^{\text{sq-expt}}(\overrightarrow{y^*}, y) = |\overrightarrow{y^*} - p(y)|_2^2 \]

hinge loss
\[\ell^{\text{hinge}}(\overrightarrow{y^*}, y) = \max \left\{ 0, 1 + \max_{j \neq y^*} (y[j] - \overrightarrow{y^*}[j]) \right\} \]
Gradient Descent: Backpropagate the Error

Set $t = 0$
Pick a starting value θ_t
Until converged:

for example(s) i:

1. Compute loss l on x_i
2. Get gradient $g_t = l'(x_i)$
3. Get scaling factor ρ_t
4. Set $\theta_{t+1} = \theta_t - \rho_t * g_t$
5. Set $t += 1$

epoch: a single run over all training data

(mini-)batch: a run over a subset of the data
Gradients for Feed Forward Neural Network

\[y_k = \sigma \left(\beta_k^T \left(\sigma (w_j^T x + b_0) \right)_j \right) \]

\[\mathcal{L} = -\sum_k \overrightarrow{y^*}[k] \log y_k \]

\[\frac{\partial \mathcal{L}}{\partial \beta_{kj}} = -\frac{1}{y_{y^*}} \frac{\partial y_{y^*}}{\partial \beta_{kj}} \]

\[\frac{\partial \mathcal{L}}{\partial w_{jl}} \]
Gradients for Feed Forward Neural Network

\[y_k = \sigma \left(\beta_k^T \left(\sigma (w_j^T x + b_0) \right)_j \right) \]

\[L = - \sum_k \overrightarrow{y}^*[k] \log y_k \]

\[\frac{\partial L}{\partial \beta_{kj}} = -1 \frac{\partial y^*_y}{\partial \beta_{kj}} = \frac{-\sigma' (\beta_y^T h)}{\sigma (\beta_y^T h)} \frac{\partial \beta_k^T h}{\partial \beta_{kj}} \]

\[\frac{\partial L}{\partial w_{jl}} \]
Gradients for Feed Forward Neural Network

\[y_k = \sigma \left(\beta_k^T \left(\sigma (w_j^T x + b_0) \right)_j \right) \]

\[\mathcal{L} = - \sum_k y^*_k \log y_k \]

\[h: \text{a vector} \]

\[\frac{\partial \mathcal{L}}{\partial \beta_{kj}} = -1 \frac{\partial y^*_k}{\partial \beta_{kj}} = \frac{-\sigma'(\beta_{y^*h})}{\sigma(\beta_{y^*h})} \frac{\partial \beta_k^T h}{\partial \beta_{kj}} = \frac{-\sigma'(\beta_{y^*h})}{\sigma(\beta_{y^*h})} \frac{\partial \sum_j \beta_{y^*j} h_j}{\partial \beta_{kj}} \]

\[\frac{\partial \mathcal{L}}{\partial w_{jl}} \]
Gradients for Feed Forward Neural Network

\[y_k = \sigma \left(\beta_k^T \left(\sigma \left(w_j^T x + b_0 \right) \right)_j \right) \]

\[\mathcal{L} = - \sum_k \overrightarrow{y^*}[k] \log y_k \]

\[h: \text{ a vector} \]

\[\frac{\partial \mathcal{L}}{\partial \beta_{kj}} = \frac{-1}{y_j^*} \frac{\partial y_j^*}{\partial \beta_{kj}} = -\sigma'(\beta_y^T h) \frac{\partial \beta_k^T h}{\partial \beta_{kj}} = -\sigma'(\beta_y^T h) \frac{\partial \sum_j \beta_y^* h_j}{\partial \beta_{kj}} \]

\[= \left(1 - \sigma(\beta_y^T h) \right) h_j \]

\[\frac{\partial \mathcal{L}}{\partial w_{jl}} = \left(1 - \sigma(\beta_y^T h) \right) \left(\beta_y^* \sigma'(w_j^T x) x_l \right) \]
Gradients for Feed Forward Neural Network

\[y_k = \sigma \left(\beta_k^T \left(\sigma \left(w_j^T x + b_0 \right) \right)_j \right) \]

\[L = - \sum_k y^*_k \log y_k \]

\[\frac{\partial L}{\partial \beta_{kj}} = \left(1 - \sigma(\beta_{y^*}^T h) \right) h_j \]

\[\frac{\partial L}{\partial w_{jl}} = \left(1 - \sigma(\beta_{y^*}^T h) \right) (\beta_{y^*j} \sigma'(w_j^T x) x_l) \]
Outline

Neural networks: non-linear classifiers

Learning weights: backpropagation of error

Autodifferentiation (in reverse mode)
Finding Gradients

\[f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2) \]

what are the partial derivatives?
Finding Gradients

\[f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2) \]

\[\frac{\partial f(x_1, x_2)}{\partial x_1} = 2x_1 + a(x_1 - x_2)^{a-1} - \frac{2x_1}{x_1^2 + x_2^2} \]
Finding Gradients

\[f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2) \]

\[\frac{\partial f(x_1, x_2)}{\partial x_1} = 2x_1 + a(x_1 - x_2)^{a-1} - \frac{2x_1}{x_1^2 + x_2^2} \]

\[\frac{\partial f(x_1, x_2)}{\partial x_2} = -a(x_1 - x_2)^{a-1} - \frac{2x_2}{x_1^2 + x_2^2} \]
Autodifferentiation

\[f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2) \]

\[z_1 = x_1^2 \]
\[z_2 = x_2^2 \]
\[z_3 = (x_1 - x_2) \]
\[z_4 = z_3^a \]
\[z_5 = z_1 + z_2 \]
\[z_6 = \log z_5 \]
\[z_7 = z_1 + z_4 - z_6 \]
\[y = z_7 \]
Autodifferentiation

\[f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2) \]

\[z_1 = x_1^2 \]
\[z_2 = x_2^2 \]
\[z_3 = (x_1 - x_2) \]
\[z_4 = z_3^a \]
\[z_5 = z_1 + z_2 \]
\[z_6 = \log z_5 \]
\[z_7 = z_1 + z_4 - z_6 \]
\[y = z_7 \]

“straight line” program
Autodifferentiation

\[f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2) \]

\[z_1 = x_1^2 \]
\[z_2 = x_2^2 \]
\[z_3 = (x_1 - x_2) \]
\[z_4 = z_3^a \]
\[z_5 = z_1 + z_2 \]
\[z_6 = \log z_5 \]
\[z_7 = z_1 + z_4 - z_6 \]
\[y = z_7 \]

"straight line" program

computation graph
Autodifferentiation

\[f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2) \]

\[
\begin{align*}
z_1 &= x_1^2 \\
z_2 &= x_2^2 \\
z_3 &= (x_1 - x_2) \\
z_4 &= z_3^a \\
z_5 &= z_1 + z_2 \\
z_6 &= \log z_5 \\
z_7 &= z_1 + z_4 - z_6 \\
y &= z_7
\end{align*}
\]

“straight line” program
Autodifferentiation

\[
f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2)
\]

\[
\begin{align*}
z_1 &= x_1^2 \\
z_2 &= x_2^2 \\
z_3 &= (x_1 - x_2) \\
z_4 &= z_3^a \\
z_5 &= z_1 + z_2 \\
z_6 &= \log z_5 \\
z_7 &= z_1 + z_4 - z_6 \\
y &= z_7
\end{align*}
\]
Autodifferentiation

\[f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2) \]

- \(z_1 = x_1^2 \)
- \(z_2 = x_2^2 \)
- \(z_3 = (x_1 - x_2) \)
- \(z_4 = z_3^a \)
- \(z_5 = z_1 + z_2 \)
- \(z_6 = \log(z_5) \)
- \(z_7 = z_1 + z_4 - z_6 \)
- \(y = z_7 \)

\[\delta t = \frac{\partial y}{\partial t} \]

adjoint

goals:

\[\frac{\partial y}{\partial x_1} \]

\[\frac{\partial y}{\partial x_2} \]

\(\delta y = 1 \)
Autodifferentiation

\[f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2) \]

\[
\begin{align*}
 z_1 &= x_1^2 \\
 z_2 &= x_2^2 \\
 z_3 &= (x_1 - x_2) \\
 z_4 &= z_3^a \\
 z_5 &= z_1 + z_2 \\
 z_6 &= \log z_5 \\
 z_7 &= z_1 + z_4 - z_6 \\
 y &= z_7
\end{align*}
\]

adjoint

\[
\begin{align*}
 \frac{\partial y}{\partial t} &= \frac{\partial y}{\partial t} \\
 \frac{\partial y}{\partial x_1} &= \frac{\partial y}{\partial x_1} \\
 \frac{\partial y}{\partial x_2} &= \frac{\partial y}{\partial x_2} \\
 \frac{\partial y}{\partial z_7} &= \frac{\partial y}{\partial z_7}
\end{align*}
\]
Autodifferentiation

\[f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2) \]

\[
\begin{align*}
z_1 &= x_1^2 \\
z_2 &= x_2^2 \\
z_3 &= (x_1 - x_2) \\
z_4 &= z_3^a \\
z_5 &= z_1 + z_2 \\
z_6 &= \log(z_5) \\
z_7 &= z_1 + z_4 - z_6 \\
y &= z_7
\end{align*}
\]

goals:
\[
\begin{align*}
\frac{\partial y}{\partial x_1} \\
\frac{\partial y}{\partial x_2}
\end{align*}
\]

adjoint
\[
\dot{t} = \frac{\partial y}{\partial t}
\]

\[
\begin{align*}
\dot{z}_7 &= \frac{\partial y}{\partial z_7} = 1 \\
\dot{z}_6 &= \frac{\partial y}{\partial z_6} = \frac{\partial y}{\partial z_7} \frac{\partial z_7}{\partial z_6} = \dot{z}_7 * -1
\end{align*}
\]
Autodifferentiation

\[f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2) \]

\[z_1 = x_1^2 \]
\[z_2 = x_2^2 \]
\[z_3 = (x_1 - x_2) \]
\[z_4 = z_3^a \]
\[z_5 = z_1 + z_2 \]
\[z_6 = \log z_5 \]
\[z_7 = z_1 + z_4 - z_6 \]
\[y = z_7 \]

goals:
\[\frac{\partial y}{\partial x_1} \]
\[\frac{\partial y}{\partial x_2} \]

\[\delta t = \frac{\partial y}{\partial t} \]

adjoint

\[\delta z_6 = \frac{\partial y}{\partial z_6} = \frac{\partial y}{\partial z_7} \frac{\partial z_7}{\partial z_6} = \delta z_7 \times -1 \]
\[\delta z_4 = \frac{\partial y}{\partial z_4} = \frac{\partial y}{\partial z_7} \frac{\partial z_7}{\partial z_4} = \delta z_7 \times 1 \]
Autodifferentiation

\[f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2) \]

\[z_1 = x_1^2 \]
\[z_2 = x_2^2 \]
\[z_3 = (x_1 - x_2) \]
\[z_4 = z_3^a \]
\[z_5 = z_1 + z_2 \]
\[z_6 = \log z_5 \]
\[z_7 = z_1 + z_4 - z_6 \]
\[y = z_7 \]

goals:
\[\frac{\partial y}{\partial x_1} \]
\[\frac{\partial y}{\partial x_2} \]
\[\frac{\partial z_5}{\partial z_5} = \frac{\partial y}{\partial z_7} \frac{\partial z_7}{\partial z_5} = \frac{\partial y}{\partial z_7} \frac{\partial z_7}{\partial z_6} \frac{\partial z_6}{\partial z_5} \]

adjoint

\[\delta t = \frac{\partial y}{\partial t} \]
Autodifferentiation

\[f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2) \]

\[z_1 = x_1^2 \]
\[z_2 = x_2^2 \]
\[z_3 = (x_1 - x_2) \]
\[z_4 = z_3^a \]
\[z_5 = z_1 + z_2 \]
\[z_6 = \log z_5 \]
\[z_7 = z_1 + z_4 - z_6 \]
\[y = z_7 \]

adjoint goals:

\[\frac{\partial y}{\partial x_1} \]
\[\frac{\partial y}{\partial x_2} \]

\[\frac{\partial}{\partial z_5} \]
\[\frac{\partial}{\partial z_7} \]

\[\frac{\partial}{\partial z_6} \]
\[\frac{\partial}{\partial z_4} \]

\[\frac{\partial}{\partial z_7} \]

\[\frac{\partial}{\partial y} \]

\[\frac{\partial}{\partial t} \]

\[\frac{\partial y}{\partial t} = 1 \]
\[\frac{\partial z_7}{\partial z_7} = 1 \]
\[\frac{\partial z_6}{\partial z_7} = -1 \]
\[\frac{\partial z_4}{\partial z_7} = 1 \]

\[\frac{\partial z_5}{\partial z_5} = \frac{\partial y}{\partial z_5} = \frac{\partial y}{\partial z_7} \frac{\partial z_7}{\partial z_5} = \frac{\partial y}{\partial z_7} \frac{\partial z_7}{\partial z_6} \frac{\partial z_6}{\partial z_5} = \frac{\partial z_6}{z_5} * 1 \]
Autodifferentiation

\[f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2) \]

\[
\begin{align*}
z_1 &= x_1^2 \\
z_2 &= x_2^2 \\
z_3 &= (x_1 - x_2) \\
z_4 &= z_3^a \\
z_5 &= z_1 + z_2 \\
z_6 &= \log z_5 \\
z_7 &= z_1 + z_4 - z_6 \\
y &= z_7
\end{align*}
\]

goals:

\[
\begin{align*}
\frac{\partial y}{\partial x_1} &=\frac{\partial y}{\partial z_1} = \frac{\partial y}{\partial z_7} \frac{\partial z_7}{\partial z_1} + \frac{\partial y}{\partial z_7} \frac{\partial z_7}{\partial z_6} \frac{\partial z_6}{\partial z_5} \frac{\partial z_5}{\partial z_1} \\
\frac{\partial y}{\partial x_2} &= \frac{\partial y}{\partial z_7} = 1 \\
\frac{\partial y}{\partial t} &= \frac{\partial y}{\partial t} = 1 \\
\frac{\delta z_7}{\delta z_7} &= 1 \\
\frac{\delta z_6}{\delta z_7} &= \frac{\delta z_7}{-1} \\
\frac{\delta z_4}{\delta z_7} &= \frac{\delta z_7}{1} \\
\frac{\delta z_5}{\delta z_6} &= \frac{\delta z_6}{\frac{1}{z_5}}
\end{align*}
\]
Autodifferentiation

\[f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2) \]

\[z_1 = x_1^2 \]
\[z_2 = x_2^2 \]
\[z_3 = (x_1 - x_2) \]
\[z_4 = z_3^a \]
\[z_5 = z_1 + z_2 \]
\[z_6 = \log z_5 \]
\[z_7 = z_1 + z_4 - z_6 \]
\[y = z_7 \]

goals:
\[\frac{\partial y}{\partial x_1} \]
\[\frac{\partial y}{\partial x_2} \]

adjoint

\[\delta t = \frac{\partial y}{\partial t} \]

\[\delta z_1 = \frac{\partial y}{\partial z_1} = \delta z_7 \cdot 1 + \delta z_5 \cdot 1 \]

\[\delta z_5 = \delta z_6 \cdot \frac{1}{z_5} \]
Autodifferentiation

\[f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2) \]

\[z_1 = x_1^2 \]
\[z_2 = x_2^2 \]
\[z_3 = (x_1 - x_2) \]
\[z_4 = z_3^a \]
\[z_5 = z_1 + z_2 \]
\[z_6 = \log z_5 \]
\[z_7 = z_1 + z_4 - z_6 \]
\[y = z_7 \]

goals:
\[\frac{\partial y}{\partial x_1} \]
\[\frac{\partial y}{\partial x_2} \]

\[\delta t = \frac{\partial y}{\partial t} \]

adjoint

\[\delta y = 1 \]
\[\delta z_7 = \frac{\partial y}{\partial z_7} = 1 \]
\[\delta z_6 = \delta z_7 \times -1 \]
\[\delta z_4 = \delta z_7 \times 1 \]
\[\delta z_5 = \delta z_6 \times \frac{1}{z_5} \]
\[\delta z_1 + = \delta z_7 \times 1 \]
\[\delta z_1 + = \delta z_5 \times 1 \]
Autodifferentiation

\[f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2) \]

\[z_1 = x_1^2 \]
\[z_2 = x_2^2 \]
\[z_3 = (x_1 - x_2) \]
\[z_4 = z_3^a \]
\[z_5 = z_1 + z_2 \]
\[z_6 = \log z_5 \]
\[z_7 = z_1 + z_4 - z_6 \]
\[y = z_7 \]

goals:
\[\frac{\partial y}{\partial x_1} \]
\[\frac{\partial y}{\partial x_2} \]

\[\frac{\partial y}{\partial t} = \frac{\partial y}{\partial t} \]
adjoint

\[\delta t = \frac{\partial y}{\partial t} \]

\[\delta z_2 = \frac{\partial y}{\partial z_2} = \delta z_5 \times 1 \]

\[\delta z_7 = \frac{\partial y}{\partial z_7} = 1 \]
\[\delta z_6 = \delta z_7 \times -1 \]
\[\delta z_4 = \delta z_7 \times 1 \]
\[\delta z_5 = \delta z_6 \times \frac{1}{z_5} \]
\[\delta z_1 += \delta z_7 \times 1 \]
\[\delta z_1 += \delta z_5 \times 1 \]
Autodifferentiation

\[
f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2)
\]

\[
z_1 = x_1^2
\]

\[
z_2 = x_2^2
\]

\[
z_3 = (x_1 - x_2)
\]

\[
z_4 = z_3^a
\]

\[
z_5 = z_1 + z_2
\]

\[
z_6 = \log z_5
\]

\[
z_7 = z_1 + z_4 - z_6
\]

\[
y = z_7
\]

\[
\begin{align*}
\delta z_2 &= \delta z_5 \times 1 \\
\delta z_7 &= \frac{\partial y}{\partial z_7} = 1 \\
\delta z_6 &= \delta z_7 \times -1 \\
\delta z_4 &= \delta z_7 \times 1 \\
\delta z_5 &= \delta z_6 \times \frac{1}{z_5} \\
\delta z_1 &= \delta z_7 \times 1 \\
\delta z_1 &= \delta z_5 \times 1 \\
\end{align*}
\]
Autodifferentiation

\[f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2) \]

\[z_1 = x_1^2 \]
\[z_2 = x_2^2 \]
\[z_3 = (x_1 - x_2) \]
\[z_4 = z_3^a \]
\[z_5 = z_1 + z_2 \]
\[z_6 = \log z_5 \]
\[z_7 = z_1 + z_4 - z_6 \]
\[y = z_7 \]

goals:

\[\frac{\partial y}{\partial x_1} \]
\[\frac{\partial y}{\partial x_2} \]

\[\frac{\partial y}{\partial t} = \frac{\partial y}{\partial t} \]

adjoint

\[\delta t = \frac{\partial y}{\partial t} \]

\[\delta z_7 = \frac{\partial y}{\partial z_7} = 1 \]
\[\delta z_6 = \delta z_7 * -1 \]
\[\delta z_4 = \delta z_7 * 1 \]
\[\delta z_5 = \delta z_6 * \frac{1}{z_5} \]
\[\delta z_1 = \delta z_7 * 1 \]
\[\delta z_1 = \delta z_5 * 1 \]

\[\delta x_1 += \delta z_1 * 2x_1 \]
\[\delta x_1 += \delta z_3 * 1 \]
\[\delta x_2 += \delta z_2 * 2x_2 \]
\[\delta x_2 += \delta z_3 * -1 \]
Autodifferentiation

\[f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2) \]

\[
\begin{align*}
 z_1 &= x_1^2 \\
 z_2 &= x_2^2 \\
 z_3 &= (x_1 - x_2) \\
 z_4 &= z_3^a \\
 z_5 &= z_1 + z_2 \\
 z_6 &= \log z_5 \\
 z_7 &= z_1 + z_4 - z_6 \\
 y &= z_7
\end{align*}
\]

goals:

\[
\begin{align*}
 \frac{\partial y}{\partial x_1} &= \frac{\partial x_1}{\partial z_1} + \frac{\partial x_2}{\partial z_1} + \frac{\partial x_1}{\partial z_3} + \frac{\partial x_2}{\partial z_3} \\
 \frac{\partial y}{\partial x_2} &= \frac{\partial x_1}{\partial z_7} + \frac{\partial x_2}{\partial z_7}
\end{align*}
\]

adjoint

\[
\frac{\partial t}{\partial y} = \frac{\partial y}{\partial t}
\]
Autodifferentiation

\[f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2) \]

\[z_1 = x_1^2 \]
\[z_2 = x_2^2 \]
\[z_3 = (x_1 - x_2) \]
\[z_4 = z_3^a \]
\[z_5 = z_1 + z_2 \]
\[z_6 = \log z_5 \]
\[z_7 = z_1 + z_4 - z_6 \]
\[y = z_7 \]

goals:
\[
\frac{\partial y}{\partial x_1} = \delta z_1 + \delta z_7
\]
\[
\frac{\partial y}{\partial x_2} = \delta z_2 + \delta z_4 + \delta z_7
\]

\[\frac{\partial y}{\partial t} = \delta z_7 \]

autodifferentiation in reverse mode
Autodifferentiation in Reverse Mode

\[f(x_1, x_2) = x_1^2 + (x_1 - x_2)^a - \log(x_1^2 + x_2^2) \]

\[z_1 = x_1^2 \]
\[z_2 = x_2^2 \]
\[z_3 = (x_1 - x_2) \]
\[z_4 = z_3^a \]
\[z_5 = z_1 + z_2 \]
\[z_6 = \log z_5 \]
\[z_7 = z_1 + z_4 - z_6 \]
\[y = z_7 \]

\[\frac{\partial y}{\partial x_1} = \frac{\delta z_1 + \delta z_3 * 1}{x_1} \]
\[\frac{\partial y}{\partial x_2} = \frac{\delta z_2 + \delta z_4 * 2x_2}{x_2} \]

goals:
\[\frac{\partial y}{\partial x_1} \]
\[\frac{\partial y}{\partial x_2} \]

\[x_1 = 2 \quad x_2 = 1 \quad a = 1 \]
\[f(x_1 = 2, x_2 = 1) \approx 3.390562 \]
\[\nabla_x = (4.2, -1.4) \quad \text{by exact gradients} \]
\[\nabla_x = (4.2, -1.4) \quad \text{by autodiff} \]
Code Proof of Autodiff

```python
def autodiff(x1, x2, a=1.0):
    z1 = x1**2
    z2 = x2**2
    z3 = (x1 - x2)
    z4 = z3**a
    z5 = z1 + z2
    z6 = numpy.log(z5)
    z7 = z1 + z4 - z6
    y = z7
    dy = 1
    dz7 = dy
    dz6 = dz7 * -1.0
    dz5 = dz6 * 1.0 / z5
    dz4 = dz7 * 1.0
    dz3 = dz4 * a * z3 ** (a - 1)
    dz2 = dz5 * 1.0
    dz1 = dz7 * 1.0 + dz5 * 1.0
    dx1 = dz1 * 2 * x1 + dz3 * 1.0
    dx2 = dz2 * 2 * x2 + dz3 * -1.0
    return dx1, dx2
```

```python
>> autodiff(2, 1)
(4.2, -1.4)
```
>> def f(x1, x2):
 return x1**2 + (x1-x2)**2 - numpy.log(x1**2+x2**2)

>> def autodiff(x1, x2, a=1.0):
 z1 = x1**2
 z2 = x2**2
 z3 = (x1-x2)
 z4 = z3**a
 z5 = z1 + z2
 z6 = numpy.log(z5)
 z7 = z1 + z4 - z6
 y = z7
 dy = 1
 dz7 = dy
 dz6 = dz7 * -1.0
 dz5 = dz6 * 1.0 / z5
 dz4 = dz7 * 1.0
 dz3 = dz4 * a * z3**a
 dz2 = dz5 * 1.0
 dz1 = dz7 * 1.0 + dz5 * 1.0
 dx1 = dz1 * 2 * x1 + dz3 * 1.0
 dx2 = dz2 * 2 * x2 + dz3 * -1.0
 return dx1, dx2

>> autodiff(2,1)
(4.2, -1.4)
Outline

Neural networks: non-linear classifiers

Learning weights: backpropagation of error

Autodifferentiation (in reverse mode)