
Assignment 2

CMSC 678 — Introduction to Machine Learning

Due Friday March 9th, 2018, 11:59 AM

Item Summary
Assigned Monday February 12th, 2018
Due Friday March 9th, 2018
Topic Multiclass Classification: Perceptrons, Softmax, and Neural Networks
Points 225

In this assignment you will do math and implement, experiment with, and compare multiple types of
multiclass classifiers.

You are to complete this assignment on your own: that is, the code and writeup you submit must be
entirely your own. However, you may discuss the assignment at a high level with other students or on the
discussion board. Note at the top of your assignment who you discussed this with or what resources you
used (beyond course staff, any course materials, or public Piazza discussions).

The following table gives the overall point breakdown for this assignment.

Theory Application: Classification
Question 1 2 3 4 5 6 7 8 9

Points 20 40 25 15 20 15 40 20 30

This handout may be lengthy, but think of it as both a tutorial and assignment. I provide a lot of explanation
and re-summarizing of course concepts.

However, because this assignment handout is lengthy, I am first providing a task list. This task list
captures the essence of the questions; it details, without other explanatory text, the tasks you are to do and
what your completed assignment should answer. The task list enumerates what you must do, but it does not
necessarily specify how—that’s where the full questions come in.

Following the task list are the full questions. The full questions do not require you to answer additional
questions, but they do provide specific details, hints, and explanations. You should still read and reference
the full questions.

What To Turn In Turn in a PDF writeup that answers the questions; turn in all requested code necessary
to replicate your results. Be sure to include specific instructions on how to build (compile) and run your code.
Answers to the following questions should be long-form. Provide any necessary analyses and discussion of
your results.

How To Submit Submit the assignment on the submission site:

https://www.csee.umbc.edu/courses/graduate/678/spring18/submit.

Be sure to select “Assignment 2.”

1

https://www.csee.umbc.edu/courses/graduate/678/spring18/submit


Task List
1. Show that the MAP decision function optimizes 0-1 classification loss.

2. Turn in a written summary of maxent modeling. Your summary should consider feature design, the
issue of moment matching, regularization, and joint vs. conditional modeling. There is no minimum
or maximum page limit, but a 1/2 page summary is reasonable.

3. Prove that the cross-entropy loss (log-likelihood objective) for maxent models is convex.

4. Explore and prepare the MNIST data training data into internal training int-train and devel-
opment int-dev sets.

5. Implement a multiclass perceptron. Train it on int-train and evaluate it on int-dev. Try
to find the best model configuration possible. In your report, document the internal development
progress, i.e., how different model configurations perform on int-dev. You may not use an existing
perceptron implementation.

6. Train a maxent classifier (model ids 0 or 6) on int-train and evaluate it on int-dev. Try to find
the best model configuration possible. In your report, document the internal development progress,
i.e., how different model configurations perform on int-dev. You may use an existing maxent
implementation.

7. Implement a multiclass neural network classifier with at least one hidden layer. Train it on int-train
and evaluate it on int-dev. Try to find the best model configuration possible. In your report,
document the internal development progress, i.e., how different model configurations perform on
int-dev. Experiment with at least two types of model configurations.

8. Using the best perceptron, maxent, and neural network configurations found in the previous three
questions, train new models on the entire, original train set. At the end of this training, you should
have three models trained on the entire 60,000 training set. Evaluate these models on the original
10,000 image test set. Include these evaluation results, and a discussion of them, in your report.

9. Explore how robust each of your best models is. Provide a holistic analysis of these experiments in
your report, and compare these results to those you obtained previously from questions 4-8. You may
use the test set for these experiments.



Full Questions
Theory

1. (20 points) Given an input x, consider a discrete probabilistic model p(y | x), where y ∈ Y . For
example, p(y) could model the probabilty of rolling a 1, 2, 3, 4, 5, or 6 (represented by y) from a
weighted six-sided die. (The input x could be continuous or discrete.) Show that under 0-1 loss, the
MAP (maximum a posteriori) estimate is the optimal decision function. That is, show that the optimal
decision function is

h(x) = argmax
y∈Y

p(y | x). [Eq-1]

2. (40 points) In long-form prose, discuss the following aspects of maxent modeling:

• The effects of symmetric and conjoined features (conjunctions of features) [roughly lessons 1-4].
• How moment matching manifests in maxent models [roughly lessons 3-6].
• The intended effects of `2 vs. `1 vs. no regularization [roughly lessons 8-10].
• The difference in maximizing joint log-likelihood vs. maximizing conditional log-likelihood

[roughly lessons 11-15].
• The impact of context-only (vs. outcome-only or joint outcome-and-context) features in condi-

tional modeling [roughly lessons 12-16].

You may use math where appropriate, but do try to come up with succinct written (English) explana-
tions. There is no minimum or maximum page limit, but a 1/2 page summary is reasonable.

The lessons refer to the online tutorial at https://goo.gl/SsXQS2.1 You are highly encouraged
to work through the tutorial, but you do not have to. Each lesson has some thought questions posed
in the instruction box; you should think about them if you work through the tutorial, but you do not
have to turn in your responses to them.

3. (25 points) Consider a maximum entropy model p(y) ∝ exp(θT f(y)), where y is a member of
the finite set Y . As in Question 1, p(y) could model the probabilty of rolling a 1, 2, 3, 4, 5, or 6
(represented by y) from a weighted six-sided die. It is sometimes beneficial to interpret a correct label
y? (such as the above die rolling a 4) in a one-hot format ~y?. This one-hot vector ~y? is a vector the size
of Y: each coordinate ~y?[j] corresponds to one of the j items of Y . In a one-hot format, all entries are
0 except for the coordinate corresponding to y?. For our example of trying to model a correct roll of
y? = 4, a reasonable one-hot equivalent is ~y? = (0, 0, 0, 1, 0, 0).

We can use this one-hot format to help define the cross-entropy loss:

`xent = −
∑
j∈Y

~y?[j] log p(y = j). [Eq-2]

Show that, given N correct labels Y ? = {y?1, y?2, . . . , y?N}, the cross-entropy loss function on Y ? ,
i.e., the empirical risk, is convex. You may use, without proof, the fact that the (finite) sum of convex
functions is convex. Hint: consider some of the parts of Assignment 1, question 1.2

1 This is a shortened URL for https://www.csee.umbc.edu/courses/graduate/678/spring18/
loglin-tutorial.

2 You may be wondering what are the predicted items in cross-entropy loss. The cross-entropy loss measures the correctness of
probabilities corresponding to particular classes, against hard, “gold standard” (correct) judgments. Therefore, the predicted items
are actually probabilities, from which you can easily get a single discrete prediction. You do not have to answer, but you should
think about, when [Eq-2] would be minimized.

https://goo.gl/SsXQS2
https://www.csee.umbc.edu/courses/graduate/678/spring18/loglin-tutorial
https://www.csee.umbc.edu/courses/graduate/678/spring18/loglin-tutorial


Classification Project: Implementation, Experimentation, and Discus-
sion

The next six questions lead you through building, experimenting with, reporting on the performance
of, and analyzing a suite of multiclass classifiers: multiclass perceptron, a maxent model, and a neural
network classifier (non-linear multilayer perceptron). The core deliverables for these questions are:

(a) any implementations, scripts, and serialized model files needed to compile and
run your code; and

(b) a written report discussing

• an analysis of your particular development split [from question 4];

• your implementations, including any design decisions or difficulties you
experienced [from questions 5-7];

• evidence and analysis of internal development/experimentation on each of
the models on the development set [from questions 5-7]; and

• results and analysis of a full comparison on the test set [from 8-9].

Each step that this assignment leads you through is its own “question.” You may answer these ques-
tions individually, or all at once in your report.

The data we’ll be using is the MNIST digit dataset: in total, there are 70,000 “images” of handwritten
digits (each between 0-9). The task is to predict the digit y ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} from a 28x28
input grayscale image x. 60,000 of these are allocated for training and 10,000 are allocated for testing.
Do not use the 10,000 testing portion until question 8.

4. (15 points) You have two tasks in this question. First, get acquainted with the data: make sure that
you can read it properly and you are sufficiently familiar with the storage format so you can easily use
these files in later questions.

Second, you are to split the 60,000 training set into an internal training set (int-train) and an
internal development set (int-dev). How you split (e.g., randomly, stratified sampling, taking the
first M ), and the resulting sizes of int-train and int-dev are up to you. In your report,
compare the int-train, int-dev, and full train sets. Discuss how you split these.

How you choose to do this is up to you: one way is to produce a histogram of the number of digits per
split. Another way is to compute the entropy of the empirical label distribution for each of the splits.
There are other ways as well.

The dataset is available from multiple locations, in multiple formats. All of the data in these formats
is the same, but don’t assume the order within each set is the same. Which you use is more a question
of what is easiest for you.

for Python As a gzipped row-major Pickle file, on GL at
/afs/umbc.edu/users/f/e/ferraro/pub/678-s18/mnist-data/mnist rowmajor.pkl.gz.
This maps the keys ’images train’, ’labels train’, ’images test’, ’labels test’
to numpy arrays.



for Matlab or Python As column-major mat files, on GL at
/afs/umbc.edu/users/f/e/ferraro/pub/678-s18/mnist-data/mnist colmajor.mat.
This maps the keys ’images train’, ’labels train’, ’images test’, ’labels test’
to arrays/vectors.

for any language as four compressed IDX files from the “original” source, at http://yann.lecun.com/
exdb/mnist/.3 These are binary files. If you want to use this version, be aware of first the
type to read (e.g., 32 bit int vs. unsigned byte), and that ints are in a high endian form!

Each image x is represented as a 784 (= 28×28) one-dimensional array; the row-major/column-major
distinction refers to how each image x should be interpreted in memory.

Notice that each component of x is a float (0 ≤ xi ≤ 1). If you want to visualize the images, you can
apply the sign function (with τ = 0) and print its output in a 28x28 grid

signτ (xi) =

{
1 xi > τ

0 xi ≤ τ.
[Eq-3]

Note that [Eq-3] provides a binary representation of the input x.

5. (20 points) Implement a multiclass perceptron. Train it on int-train and evaluate it on int-dev.
Try to find the best model configuration possible. In your report, document the internal development
progress, i.e., how different model configurations perform on int-dev.

For this question, you may use computation accelerators (e.g., blas, numpy, MATLAB) but you may
not use any existing perceptron implementation.

Here, configuration types include:

• the bias;

• if you implement a standard multiclass perceptron, a voted perceptron, or an averaged percep-
tron;

• the convergence criteria;

• the input feature representation (e.g., do you use x directly, or use a binary repres, or a thresh-
olded identity or binary representation, e.g., τ > 0).

Training a multiclass perceptron follows the training for a binary perceptron as discussed in class,
with the following three changes: first, rather than there being a single weight vector w, there is now
a weight vector wj per class j. Second, a single prediction is obtained from the maximum of a vector
of predictions ~y, using each of the class-specific weight vectors. That is, ~y[j] = wᵀ

jx and the predicted
value y = argmaxj ~y[j]. Third, each a prediction is incorrect, the correct weights wy? are increased
by x, and the mispredicted weights wy are decreased by x.

6. (15 points) Experiment with maxent classifiers. This assignment is plenty difficult already, so you do
not have to implement your own maxent classifier. You can use any existing maxent implementation;
just tell us which one it is.

A popular implementation is liblinear.4 It is on GL at

/afs/umbc.edu/users/f/e/ferraro/pub/678-s18/liblinear-2.20.
3They are also on GL at/afs/umbc.edu/users/f/e/ferraro/pub/678-s18/mnist-data/*idx*.gz.

However, you will need to reference the format documentation at the above URL.
4 https://www.csie.ntu.edu.tw/˜cjlin/liblinear

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.csie.ntu.edu.tw/~cjlin/liblinear


Within this directory there are compiled binaries in bin/train and bin/predict; they have
been compiled for GL. There are also Python and MATLAB modules of liblinear.

Train a maxent classifier (model ids 0 or 6) on int-train and evaluate it on int-dev. Try to find
the best model configuration possible. In your report, document the internal development progress,
i.e., how different model configurations perform on int-dev.

Here, configuration types include:

• the regularization used;

• the bias;

• the input feature representation.

7. (40 points) Implement a multiclass neural network classifier with at least one hidden layer. Train it
on int-train and evaluate it on int-dev. Try to find the best model configuration possible. In
your report, document the internal development progress, i.e., how different model configurations
perform on int-dev. Experiment with at least two types of model configurations.

For this question, you may use computation accelerators (e.g., blas, numpy, MATLAB) and existing
gradient descent and learning rate implementations. You may not use any existing neural network,
gradient computation, or backpropagation implementations. That is, you must derive and implement
the gradient yourself but you may use an existing implementation to actually perform the gradient
descent (including setting the learning rate).

Configuration types include, but aren’t limited to:

• the number of and size of the hidden layers;

• activation functions for each layer (e.g., sigmoid, tanh, ReLU);

• bias for each layer;

• loss function (e.g., cross-entropy, hinge loss, squared expectation loss). You are not restricted
to these loss functions. Using o to represent the output of the last layer, cross-entropy loss, also
called log loss, can be defined as in [Eq-2]:

− ~y?
ᵀ
log(softmax(o)). [Eq-4]

The squared expectation loss can be defined as

‖ ~y? − softmax(o)‖22. [Eq-5]

Multiclass hinge loss can be defined as

max

{
0, 1 + max

y 6=y?
(~o[y]− ~o[y?])

}
. [Eq-6]

• the input feature representation;

• any regularization of the loss function (either directly, or through a mechanism like dropout).

8. (20 points) Using the best perceptron, maxent, and neural network configurations found in the previ-
ous three questions, train new models on the entire, original train set. At the end of this training,
you should have three models trained on the entire 60,000 training set. Evaluate these models on
the original 10,000 image test set. Include these evaluation results in your report and discuss the
results.



9. (30 points) Explore how robust each of your best models is. Provide a holistic analysis of these ex-
periments in your report, and compare these results to those you obtained previously from questions
4-8. You may use the test set for these experiments.

How can you examine the “robustness” of your models? There are a number of ways, but three
common ones include

• adding random noise to your data (at training time, testing time, or both);

• using only a percentage of the train set;

• the order of the train set.

In the first way, you could add a little bit of random noise (e.g., ε ∼ Normal(0, 0.01)) to each input
pixel. You could also add this random noise randomly (so first flip a coin as whether a pixel will be
noised, and then if so, add the noise).

In the second way, you can train on increasing percentages of the training data. This lets you evaluate
your models on the full test set when they have only seen 1% (600 images), or 10% (6000 images), or
25% (15,000 images)—or some other percentage—of the training images.

In the third way, you can change the order of the training examples. This allows you to examine how
the models perform when they’re shown training examples in random order, in sorted order (all 0s
first, then all 1s, then all 2s, etc.), or in some stratified order (e.g., a 0, then a 1, then a 2, etc.).


