A Tutorial on Boosting

Yoav Freund
Rob Schapire

www.research.att.com/~yoav
www.research.att.com/~schapire
Example: “How May I Help You?”

- **goal:** automatically categorize type of call requested by phone customer

 \((\text{Collect, CallingCard, PersonToPerson, etc.})\)

 - yes I’d like to place a collect call long distance please \((\text{Collect})\)
 - operator I need to make a call but I need to bill it to my office \((\text{ThirdNumber})\)
 - yes I’d like to place a call on my master card please \((\text{CallingCard})\)
 - I just called a number in sioux city and I musta rang the wrong number because I got the wrong party and I would like to have that taken off of my bill \((\text{BillingCredit})\)

- **observation:**

 - **easy** to find “rules of thumb” that are “often” correct

 - e.g.: “IF ‘card’ occurs in utterance THEN predict ‘CallingCard’ ”

 - **hard** to find single highly accurate prediction rule
The Boosting Approach

- select small subset of examples
- derive rough rule of thumb
- examine 2nd set of examples
- derive 2nd rule of thumb
- repeat T times

questions:
- how to choose subsets of examples to examine on each round?
- how to combine all the rules of thumb into single prediction rule?

boosting = general method of converting rough rules of thumb into highly accurate prediction rule
Tutorial outline

- **first half** (Rob): behavior on the training set
 - background
 - AdaBoost
 - analyzing training error
 - experiments
 - connection to game theory
 - confidence-rated predictions
 - multiclass problems
 - boosting for text categorization

- **second half** (Yoav): understanding AdaBoost’s generalization performance
The Boosting Problem

- "strong" PAC algorithm
 - for any distribution
 - $\forall \epsilon > 0, \delta > 0$
 - given polynomially many random examples
 - finds hypothesis with error $\leq \epsilon$ with probability $\geq 1 - \delta$

- "weak" PAC algorithm
 - same, but only for $\epsilon \geq \frac{1}{2} - \gamma$

- [Kearns & Valiant ’88]:
 - does weak learnability imply strong learnability?
Early Boosting Algorithms

- [Schapire ’89]:
 - first provable boosting algorithm
 - call weak learner three times on three modified distributions
 - get slight boost in accuracy
 - apply recursively

- [Freund ’90]:
 - “optimal” algorithm that “boosts by majority”

- [Drucker, Schapire & Simard ’92]:
 - first experiments using boosting
 - limited by practical drawbacks
AdaBoost

- [Freund & Schapire ’95]:
 - introduced “AdaBoost” algorithm
 - strong practical advantages over previous boosting algorithms

- experiments using AdaBoost:
 [Drucker & Cortes ’95] [Schapire & Singer ’98]
 [Jackson & Craven ’96] [Maclin & Opitz ’97]
 [Freund & Schapire ’96] [Bauer & Kohavi ’97]
 [Quinlan ’96] [Schwenk & Bengio ’98]
 [Breiman ’96] [Dietterich ’98]
 :

- continuing development of theory and algorithms:
 [Schapire, Freund, Bartlett & Lee ’97] [Schapire & Singer ’98]
 [Breiman ’97] [Mason, Bartlett & Baxter ’98]
 [Grove & Schuurmans ’98] [Friedman, Hastie & Tibshirani ’98]
 :

A Formal View of Boosting

- given training set \((x_1, y_1), \ldots, (x_m, y_m)\)
- \(y_i \in \{-1, +1\}\) correct label of instance \(x_i \in X\)
- for \(t = 1, \ldots, T\):
 - construct distribution \(D_t\) on \(\{1, \ldots, m\}\)
 - find weak hypothesis (“rule of thumb”) \(h_t : X \rightarrow \{-1, +1\}\)
 with small error \(\epsilon_t\) on \(D_t\):
 \[
 \epsilon_t = \Pr_{D_t}[h_t(x_i) \neq y_i]
 \]
 - output final hypothesis \(H_{\text{final}}\)
AdaBoost

[Freund & Schapire]

- **constructing** D_t:
 - $D_1(i) = 1/m$
 - given D_t and h_t:
 \[
 D_{t+1}(i) = \frac{D_t(i)}{Z_t} \cdot \begin{cases}
 e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\
 e^{\alpha_t} & \text{if } y_i \neq h_t(x_i)
 \end{cases}
 \]
 \[
 = \frac{D_t(i)}{Z_t} \cdot \exp(-\alpha_t y_i h_t(x_i))
 \]
 where $Z_t =$ normalization constant
 \[
 \alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0
 \]

- **final hypothesis**:
 - $H_{\text{final}}(x) = \text{sign} \left(\sum_t \alpha_t h_t(x) \right)$
Toy Example

\[D_1 \]

\begin{array}{ccccc}
 & + & & & + \\
+ & & + & & \\
 & & - & & \\
 & & & - & \\
\end{array}
Round 1

\[\alpha_1 = 0.42 \]

\[\varepsilon_1 = 0.30 \]
Round 2

\[\varepsilon_2 = 0.21 \]
\[\alpha_2 = 0.65 \]
Round 3

\[\alpha_3 = 0.92 \]

\[\varepsilon_3 = 0.14 \]
H_{final}

$$= \text{sign} \left(0.42 + 0.65 + 0.92 \right)$$

* See demo at
www.research.att.com/~yoav/adaboost
Analyzing the training error

• **Theorem:**
 - run AdaBoost
 - let $\epsilon_t = 1/2 - \gamma_t$
 - then

 \[
 \text{training error}(H_{\text{final}}) \leq \prod_t \left[2\sqrt{\epsilon_t(1 - \epsilon_t)} \right]
 = \prod_t \sqrt{1 - 4\gamma_t^2}
 \leq \exp \left(-2 \sum_t \gamma_t^2 \right)
 \]

• so: if $\forall t : \gamma_t \geq \gamma > 0$
 then training error(H_{final}) $\leq e^{-2\gamma^2 T}$

• **adaptive:**
 - does not need to know γ or T a priori
 - can exploit $\gamma_t \gg \gamma$
Proof

- let $f(x) = \sum_t \alpha_th_t(x) \Rightarrow H_{\text{final}}(x) = \text{sign}(f(x))$

- **Step 1**: unwrapping recursion:

 $$D_{\text{final}}(i) = \frac{1}{m} \cdot \exp\left(\frac{-y_i \sum_t \alpha_th_t(x_i)}{\prod_t Z_t}\right)$$

 $$= \frac{1}{m} \cdot \frac{e^{-y_if(x_i)}}{\prod_t Z_t}$$

- **Step 2**: training error(H_{final}) $\leq \prod_t Z_t$

- Proof:
 - $H_{\text{final}}(x) \neq y \Rightarrow yf(x) \leq 0 \Rightarrow e^{-yf(x)} \geq 1$

 - so:

 $$\text{training error}(H_{\text{final}}) = \frac{1}{m} \sum_i \left\{ \begin{array}{ll} 1 & \text{if } y_i \neq H_{\text{final}}(x_i) \\ 0 & \text{else} \end{array} \right.$$

 $$\leq \frac{1}{m} \sum_i e^{-y_if(x_i)}$$

 $$= \sum_i D_{\text{final}}(i) \prod_t Z_t$$

 $$= \prod_t Z_t$$
• **Step 3**: \(Z_t = 2\sqrt{\epsilon_t(1 - \epsilon_t)} \)

• **Proof:**

\[
Z_t = \sum_i D_t(i) \exp(-\alpha_t y_i h_t(x_i))
\]

\[
= \sum_{i: y_i \neq h_t(x_i)} D_t(i) e^{\alpha t} + \sum_{i: y_i = h_t(x_i)} D_t(i) e^{-\alpha t}
\]

\[
= \epsilon_t e^{\alpha t} + (1 - \epsilon_t) e^{-\alpha t}
\]

\[
= 2\sqrt{\epsilon_t(1 - \epsilon_t)}
\]
• tested AdaBoost on UCI benchmarks

• used:
 • **C4.5** (Quinlan’s decision tree algorithm)
 • “**decision stumps**”: very simple rules of thumb that test on single attributes

```
  eye color = brown ?
  yes  no
  predict +1  predict -1

  height > 5 feet ?
  yes  no
  predict -1  predict +1
```

```
  C4.5

  boosting Stumps

  boosting C4.5
```
Game Theory

- **game** defined by matrix \mathbf{M}:

<table>
<thead>
<tr>
<th></th>
<th>Rock</th>
<th>Paper</th>
<th>Scissors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rock</td>
<td>1/2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Paper</td>
<td>0</td>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td>Scissors</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
</tr>
</tbody>
</table>

- **row player** chooses row i
- **column player** chooses column j (simultaneously)
- **row player’s goal**: minimize loss $\mathbf{M}(i,j)$
- **usually allow randomized play**:
 - players choose distributions \mathbf{P} and \mathbf{Q} over rows and columns
- **learner’s (expected) loss**

\[= \sum_{i,j} \mathbf{P}(i) \mathbf{M}(i,j) \mathbf{Q}(j)\]

\[= \mathbf{P}^T \mathbf{M} \mathbf{Q} \equiv \mathbf{M}(\mathbf{P}, \mathbf{Q}) \]
The Minmax Theorem

- von Neumann’s minmax theorem:

\[
\min_P \max_Q M(P, Q) = \max_Q \min_P M(P, Q) = v = \text{“value” of game } M
\]

- in words:
 - \(v = \min \max \) means:
 - row player has strategy \(P^* \)
 - such that \(\forall \) column strategy \(Q \)
 - loss \(M(P^*, Q) \leq v \)
 - \(v = \max \min \) means:
 - this is optimal in sense that
 - column player has strategy \(Q^* \)
 - such that \(\forall \) row strategy \(P \)
 - loss \(M(P, Q^*) \geq v \)
The Boosting Game

- row player ↔ booster
- column player ↔ weak learner
- matrix \mathbf{M}:
 - row ↔ example (x_i, y_i)
 - column ↔ weak hypothesis h
 - $\mathbf{M}(i, h) = \begin{cases}
 1 & \text{if } y_i = h(x_i) \\
 0 & \text{else}
\end{cases}$
Boosting and the Minmax Theorem

- **if:**
 - \forall distributions over examples
 - $\exists h$ with accuracy $\geq \frac{1}{2} - \gamma$

- **then:**
 - $\min \max_{P, h} M(P, h) \geq \frac{1}{2} - \gamma$

- by minmax theorem:
 - $\max \min_{Q, i} M(i, Q) \geq \frac{1}{2} - \gamma > \frac{1}{2}$

- **which means:**
 - \exists weighted majority of hypotheses which correctly classifies all examples
AdaBoost and Game Theory

- AdaBoost is a special case of a general algorithm for solving games through repeated play.
- One can show:
 - Distribution over examples converges to (approximate) minmax strategy for boosting game.
 - Weights on weak hypotheses converge to (approximate) maxmin strategy.
- Different instantiation of game-playing algorithms gives on-line learning algorithms (such as weighted majority algorithm).
Confidence-rated Predictions

useful to allow weak hypotheses to assign confidences to predictions

formally, allow $h_t : X \rightarrow \mathbb{R}$

$$\text{sign}(h_t(x)) = \text{prediction}$$

$$|h_t(x)| = \text{“confidence”}$$

use identical update:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \cdot \exp(-\alpha_t y_i h_t(x_i))$$

and identical rule for combining weak hypotheses

questions:

- how to choose h_t’s (specifically, how to assign confidences to predictions)
- how to choose α_t’s
Confidence-rated Predictions (cont.)

- **Theorem:**

 \[
 \text{training error}(H_{\text{final}}) \leq \prod_t Z_t
 \]

- **Proof:** same as before

- therefore, on each round \(t \), should choose \(h_t \) and \(\alpha_t \)
 to minimize:

 \[
 Z_t = \sum_i D_t(i) \exp(-\alpha_t y_i h_t(x_i))
 \]

- given \(h_t \), can find \(\alpha_t \) which minimizes \(Z_t \)
 - analytically (sometimes)
 - numerically (in general)

- should design weak learner to minimize \(Z_t \)
 - e.g.: for decision trees, criterion gives:
 - splitting rule
 - assignment of confidences at leaves
Minimizing Exponential Loss

- AdaBoost attempts to minimize:

$$\prod_{t=1}^{T} Z_t = \frac{1}{m} \sum_i \exp(-y_if(x_i))$$

$$= \frac{1}{m} \sum_i \exp\left(-y_i \sum_t \alpha_t h_t(x_i)\right)$$

- really a steepest descent procedure:
 - each round, add term $\alpha_t h_t$ to sum to minimize (*)

- why this loss function?
 - upper bound on training (classification) error
 - easy to work with
 - connection to logistic regression

[Friedman, Hastie & Tibshirani]
Multiclass Problems

- say \(y \in Y = \{1, \ldots, k\} \)
- direct approach (AdaBoost.M1):

\[
 h_t : X \rightarrow Y
\]

\[
 D_{t+1}(i) = \frac{D_t(i)}{Z_t} \cdot \begin{cases}
 e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\
 e^{\alpha_t} & \text{if } y_i \neq h_t(x_i)
\end{cases}
\]

\[
 H_{\text{final}}(x) = \arg \max_{y \in Y} \sum_{t : h_t(x) = y} \alpha_t
\]

- can prove same bound on error if \(\forall t : \epsilon_t \leq 1/2 \)
 - in practice, not usually a problem for “strong” weak learners (e.g., C4.5)
 - significant problem for “weak” weak learners (e.g., decision stumps)
Reducing to Binary Problems

Schapire & Singer

e.g.:

- say possible labels are \{a, b, c, d, e\}
- each training example replaced by five \{-1, +1\}-labeled examples:

\[
\begin{align*}
(x, a) & , -1 \\
(x, b) & , -1 \\
(x, c) & , +1 \\
(x, d) & , -1 \\
(x, e) & , -1
\end{align*}
\]

\(x, c \rightarrow \)
AdaBoost.MH

• formally:

\[h_t : X \times Y \rightarrow \{-1, +1\} (\text{or } \mathbb{R}) \]

\[D_{t+1}(i, y) = \frac{D_t(i, y)}{Z_t} \cdot \exp(-\alpha_t \; v_i(y) \; h_t(x_i, y)) \]

where \(v_i(y) = \begin{cases}
+1 & \text{if } y_i = y \\
-1 & \text{if } y_i \neq y
\end{cases} \)

\[H_{\text{final}}(x) = \arg \max_{y \in Y} \sum_t \alpha_t h_t(x, y) \]

• can prove:

\[\text{training error}(H_{\text{final}}) \leq \frac{k}{2} \cdot \Pi Z_t \]
Using Output Codes

- alternative: reduce to “random” binary problems
- choose “code word” for each label

```
<table>
<thead>
<tr>
<th></th>
<th>π₁</th>
<th>π₂</th>
<th>π₃</th>
<th>π₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>b</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>c</td>
<td>+</td>
<td>−</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>d</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>e</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>
```

- each training example mapped to one example per column

```
x, c \rightarrow \begin{cases} 
(x, \pi_1) , +1 \\
(x, \pi_2) , -1 \\
(x, \pi_3) , -1 \\
(x, \pi_4) , +1 
\end{cases}
```

- to classify new example \(x \):
 - evaluate hypothesis on \((x, \pi_1), \ldots, (x, \pi_4)\)
 - choose label “most consistent” with results

- training error bounds independent of # of classes
- may be more efficient for very large # of classes

[Schapire & Singer]
weak hypotheses: very simple weak hypotheses that test on simple patterns, namely, (sparse) \(n \)-grams

- find parameter \(\alpha_t \) and rule \(h_t \) of given form which minimize \(Z_t \)
- use efficiently implemented exhaustive search

“How may I help you” data:

- 7844 training examples (hand-transcribed)
- 1000 test examples (both hand-transcribed and from speech recognizer)

categories: AreaCode, AttService, BillingCredit, CallingCard, Collect, Competitor, DialForMe, Directory, HowToDial, PersonToPerson, Rate, ThirdNumber, Time, TimeCharge, Other.
<table>
<thead>
<tr>
<th>rnd</th>
<th>term</th>
<th>AC</th>
<th>AS</th>
<th>BC</th>
<th>CC</th>
<th>CO</th>
<th>CM</th>
<th>DM</th>
<th>DI</th>
<th>HO</th>
<th>PP</th>
<th>RA</th>
<th>3N</th>
<th>TI</th>
<th>TC</th>
<th>OT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>collect</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>card</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>my home</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>person ? person</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>code</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>time</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>wrong number</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>how</td>
<td></td>
</tr>
<tr>
<td>rnd</td>
<td>term</td>
<td>AC</td>
<td>AS</td>
<td>BC</td>
<td>CC</td>
<td>CO</td>
<td>CM</td>
<td>DM</td>
<td>DI</td>
<td>HO</td>
<td>PP</td>
<td>RA</td>
<td>3N</td>
<td>TI</td>
<td>TC</td>
<td>OT</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>----</td>
</tr>
<tr>
<td>10</td>
<td>call</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>seven</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>trying to</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>and</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>third</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>to</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>for</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>charges</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>dial</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>just</td>
<td></td>
</tr>
</tbody>
</table>
- test error reaches 20% for the first time on round...
 - 1,932 without confidence ratings
 - 191 with confidence ratings
- test error reaches 18% for the first time on round...
 - 10,909 without confidence ratings
 - 303 with confidence ratings
Finding Outliers

Examples with most weight are often outliers (mislabeled and/or ambiguous)

- I’m trying to make a credit card call (Collect)
- hello (Rate)
- yes I’d like to make a long distance collect call please (CallingCard)
- calling card please (Collect)
- yeah I’d like to use my calling card number (Collect)
- can I get a collect call (CallingCard)
- yes I would like to make a long distant telephone call and have the charges billed to another number (CallingCard DialForMe)
- yeah I can not stand it this morning I did oversea call is so bad (BillingCredit)
- yeah special offers going on for long distance (AttService Rate)
- mister allen please william allen (PersonToPerson)
- yes ma’am I I’m trying to make a long distance call to a non dialable point in san miguel philippines (AttService Other)
- yes I like to make a long distance call and charge it to my home phone that’s where I’m calling at my home (DialForMe)
- I like to make a call and charge it to my ameritech (Competitor)